Degradation of polystyrene by gamma irradiation: Effect of air on the radiation-induced changes in mechanical and molecular properties

1979 ◽  
Vol 24 (2) ◽  
pp. 425-439 ◽  
Author(s):  
T. N. Bowmer ◽  
L. K. Cowen ◽  
J. H. O'Donnell ◽  
D. J. Winzor
2006 ◽  
Vol 60 (11-12) ◽  
pp. 311-315 ◽  
Author(s):  
Zorica Kacarevic-Popovic ◽  
Bojana Secerov ◽  
Milena Marinovic-Cincovic ◽  
Zoran Nedic ◽  
Slobodan Jovanovic

The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC), polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.


2010 ◽  
Vol 64 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Dejan Milicevic ◽  
Edin Suljovrujic

In this paper, changes in structure and physical properties of stabilized isotactic polypropylene (iPP) were created by gamma irradiation, up to a dose of 700 kGy, in different media: air, deionized distilled (DD) water and acetylene. Two main effects occur when polyolefins, such as iPP, are subjected to ionizing radiation: crosslinking and scission of macromolecules. The domination of one or the other of these competitive processes is determined by both the structural peculiarities of the polymers and the experimental irradiation conditions. Gel and infrared (IR) spectroscopy measurements were used to determine the changes in the degree of network formation and oxidative degradation, respectively. Sol-gel analysis was studied in detail using the Charlesby-Pinner (C-P) equation. The radiation-induced changes in the structure and evolution of oxygen-containing species were also studied through dielectric loss (tan ?) analysis in a wide temperature and/or frequency range. Evolution of low temperature dielectric relaxations with gamma irradiation was investigated. The results showed that degradation was the major reaction in the initial step of irradiation, no matter what the atmosphere was. The C-P equation seemed applicable when stabilized iPP was irradiated within a certain dose range in various atmospheres. The iPP irradiated in acetylene/air had the lowest/highest values for oxidation level, dielectric losses, Dg and G(s)/G(x) values. The calculated Dg values are 1.5 and 5 times larger for the irradiation in DD water and air than for the acetylene. Furthermore, our data confirm that oxidation strongly affects the gel point but has a much lower effect on the G(S)/G(X) ratio. In the case of dielectric relaxation measurements, the connection between the oxidative degradation and dielectric properties is well established and is in good agreement with IR spectroscopy measurements. The amount of carbonyl, hydroperoxide and other polar groups is much higher for the irradiation in air than in other media, leading to higher dielectric losses. Disappearance of low temperature (? and ?) relaxations with gamma radiation confirmed great sensitivity of iPP structure to radiation-induced changes. Complete ?vanishing? of the ? relaxation in iPP samples irradiated in air is connected with a large radiation-induced oxidative degradation in this medium. Similar crosslinking, oxidation and dielectric behaviour was observed for the samples irradiated in water and acetylene, indicating DD water as a good crosslinking medium.


2015 ◽  
Vol 239 ◽  
pp. 1-36 ◽  
Author(s):  
S.K. Tripathi ◽  
Jagdish Kaur ◽  
R. Ridhi ◽  
Kriti Sharma ◽  
Ramneek Kaur

The irradiation of nanomaterials with energetic particles has significant effects on the properties of target materials. In addition to the well-known detrimental effects of irradiations, they have also some beneficial effects on the properties of nanomaterials. Irradiation effect can change the morphology of the materials in a controlled manner and tailor their mechanical, structural, optical and electrical properties. Irradiation induced modifications in the properties of nanomaterials can be exploited for many useful applications. With the aim of getting better performance of electronic devices, it is necessary to discuss the irradiation induced changes in the nanomaterials. In order to improve the irradiation hardness of electronic components, it is also crucial to have a fundamental understanding of the impact of the irradiation on the defect states and transport properties of the host material. In the present article, we review some recent advances on the irradiation induced effects on the properties of semiconducting nanomaterials. We have reviewed the effect of different types of irradiations which includes γ-irradiation, electron beam irradiation, laser irradiation, swift heavy ion irradiations, thermal induced, and optical induced irradiations, etc. on the various properties of semiconducting nanomaterials. In addition, the irradiation induced defects are also discussed.


2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Tine N. Christensen ◽  
Seppo W. Langer ◽  
Gitte Persson ◽  
Klaus Richter Larsen ◽  
Annemarie G. Amtoft ◽  
...  

Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3′-deoxy-3′-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01–1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.


Nature ◽  
2009 ◽  
Vol 459 (7246) ◽  
pp. 587-591 ◽  
Author(s):  
Denis A. Smirnov ◽  
Michael Morley ◽  
Eunice Shin ◽  
Richard S. Spielman ◽  
Vivian G. Cheung

Sign in / Sign up

Export Citation Format

Share Document