Polymer swelling 2: A restudy of poly(styrene-co-divinylbenzene) swelling in terms of the cross-link density1

1986 ◽  
Vol 31 (6) ◽  
pp. 1749-1761 ◽  
Author(s):  
L. A. Errede
1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


Soft Matter ◽  
2014 ◽  
Vol 10 (40) ◽  
pp. 7993-8000 ◽  
Author(s):  
Mingyu Li ◽  
Jianyu Li ◽  
Hui Na ◽  
Joost J. Vlassak

We demonstrate that the fracture energy of ionogels correlates inversely with the cross-link density. The behavior of ionogels is well captured by the ideal elastomeric gel model.


2019 ◽  
Vol 12 (1) ◽  
pp. 63-69
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Rastislav Dosoudil ◽  
Ivan Hudec

Abstract Two types of composites based on natural rubber (NR) and strontium ferrite were tested in this study. Composites of the first type were prepared by incorporation of strontium ferrite in the concentration range ranging from 0 to 100 phr (parts per hundred rubber) into pure NR based rubber matrix, while with those of the second type, strontium ferrite was dosed in the same concentration level into NR based rubber batch with constant amount of carbon black — 25 phr. For rubber matrices cross-linking, a standard sulfur based curing system was used. This work is focused on the effect of magnetic filler content on physico-mechanical, magnetic and thermo-physical properties of composite materials. Subsequently, the cross-link density and the structure of the formed sulfidic cross-links were examined. The results showed that the cross-link density of both types of composites increased with the increasing content of magnetic filler, while the structure of the sulfidic cross-links was almost not influenced by the amount of strontium ferrite. Tensile strength of rubber composites with pure rubber matrix was slightly improved by the incorporation of ferrite, while in case of composites based on a carbon black batch, the incorporation of magnetic filler resulted in the decrease of this characteristic. The presence of magnetic filler in both types of composites leads to a significant increase of the remanent magnetic induction.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mingbo Ma ◽  
Pirah Ayaz ◽  
Wanhui Jin ◽  
Wenlong Zhou

The color of naturally colored silk (NCS) fades easily during home washing due to the loss of pigment accompanied by dissolution of the sericin. In this study, phytic acid was used to cross-link the sericin of NCS and reduce its solubility, aiming at improving the color fastness of NCS to repeated washing. It was found that the sericin-fixing effect increased as the concentration of phytic acid to 1.0 wt% and the cross-linking time to 5 h increased and then reached a constant level. Cross-linking at pH 7.0-8.5 and temperature 30-40°C could obtain relatively good sericin-fixing effects. The cross-linked NCS showed low sericin loss during the degumming and had much better color fastness to repeated washing as compared with the samples before cross-linking. The cross-linking method proposed in this study may be not only a kind of solution for improving the color fastness of NCS with high practicality but also an alternative for cross-linking sericin-based materials in the biomedical field.


1974 ◽  
Vol 139 (1) ◽  
pp. 180-192 ◽  
Author(s):  
David W. Rowe ◽  
Ermona B. McGoodwin ◽  
George R. Martin ◽  
Michael D. Sussman ◽  
Douglas Grahn ◽  
...  

A genetic abnormality in collagen and elastin cross-linking resembling experimental lathyrism has been identified in mice. The defect is an X-linked trait, attributed to the mottled locus which also influences coat color. The affected mice have aneurysms of the aorta and its branches, weak skin, and bone deformities in a spectrum of severity varying with the alleles at the mottled locus. A defect in the cross-linking of collagen was demonstrated in the skin of the affected animals by a marked increase in collagen extractability and a reduced proportion of cross-linked components in the extracted collagen. A decrease in lysine-derived aldehyde levels was found in both skin collagen and aortic elastin similar to that found in lathyritic tissue. Furthermore the in vitro formation of lysine-derived aldehyde was reduced. Thus the cause of the connective tissue abnormalities in these mice appears to be a defect in cross-link formation due to an impairment in aldehyde formation.


Sign in / Sign up

Export Citation Format

Share Document