Kinetic analysis of curing behavior of diglycidyl ether of bisphenol A with imidazoles using differential scanning calorimetry techniques

2006 ◽  
Vol 100 (4) ◽  
pp. 2634-2641 ◽  
Author(s):  
M. Ghaemy ◽  
S. Sadjady
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 337 ◽  
Author(s):  
Dailyn Guzmán ◽  
David Santiago ◽  
Àngels Serra ◽  
Francesc Ferrando

The pure trifunctional glycidyl monomer from phloroglucinol (3EPO-Ph) was synthesized and used as feedstock in the preparation of novel bio-based thermosets by thiol-epoxy curing. The monomer was crosslinked with different commercially available thiols: tetrafunctional thiol (PETMP), trifunctional thiol (TTMP) and an aromatic dithiol (TBBT) as curing agents in the presence of a base. As catalyst, two different commercial catalysts: LC-80 and 4-(N,N-dimethylamino) pyridine (DMAP) and a synthetic catalyst, imidazolium tetraphenylborate (base generator, BG) were employed. The curing of the reactive mixtures was studied by using DSC and the obtained materials by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The results revealed that only the formulations catalyzed by BG showed a latent character. Already prepared thermosetting materials showed excellent thermal, thermomechanical and mechanical properties, with a high transparency. In addition to that, when compared with the diglycidyl ether of bisphenol A (DGEBA)/PETMP material, the thermosets prepared from the triglycidyl derivative of phloroglucinol have better final characteristics and therefore this derivative can be considered as a partial or total renewable substitute of DGEBA in technological applications.


2013 ◽  
Vol 677 ◽  
pp. 197-200
Author(s):  
Zheng Xi ◽  
Jin Dian Ding ◽  
Wen Jun Gan ◽  
Zhao Zhang

Diglycidyl ether of bisphenol A (DGEBA) and epoxypropoxypropyl terminated polydimethylsiloxane (ETDMS) were mixed in different proportion. The morphology of ETDMS modified epoxy systems was observed by scanning electronic microscope (SEM). Curing kinetics was also studied by differential scanning calorimetry (DSC). It was suggested that the formation of the microstructures followed reaction-induced microphase separation mechanism.


2006 ◽  
Vol 514-516 ◽  
pp. 1094-1098
Author(s):  
Rosa Losada ◽  
José Luís Mier ◽  
Fernando Barbadillo ◽  
Ramón Artiaga ◽  
Angel Varela ◽  
...  

A diglycidyl-ether of bisphenol-A (DGEBA)/Triethylenetetramine (TETA) system was studied by non-isothermal differential scanning calorimetry (DSC) to establish its kinetics of cure. The DGEBA resin was Araldite GZ 601 X75 used in the marine coatings formulations. Previously, the optimum resin/hardener ratio was determined by the reaction heat measuring (.Hc) calculated from the curing exothermic peak. Tests at different heating rates (10, 15, 20, 25 and 30°C/min) under inert atmosphere were carried out in order to study the reaction kinetics. The activation energy of the cure (Ea) was obtained from these tests data by Borchardt-Daniels, autocatalytic, Duswalt and isoconversional Ozawa methods. Once the activation energy was determined, the master curves method was applied to find the kinetic model which best describes the measured DSC data. The Sestak-Berggren model SB (m,n) was found to be the most adequate for the system studied.


Author(s):  
Abbas Hassan Faris

In this work, appropriate alternative for diglycidyl ether bisphenol A (DGEBA) was found to avoid the destructive effects of bisphenol A. Lignin, an aromatic compound from palm tree leaves, was used as a renewable material to synthesize a bio-based epoxy resin. Lignin extracted using Kraft pulping process. Kraft Lignin was epoxidized with epichlorohydrin in alkaline medium. Nano-titanium dioxide was used as filler with ratio of 10% to prepare the green epoxy composite. The structure of the Kraft lignin and lignin-based epoxy resin was proven via Infrared spectra (FT-IR) were recorded using solid KBr disk by testing Shimadzu (FT-IR-8300) spectrophotometer. The thermal properties of the curing process of lignin-based epoxy resin and composite were investigate using Differential scanning calorimetry (DSC) analysis. Potentiodynamic measurements data revealed that the anti-corrosion performance of the lignin based epoxy resin. The study demonstrates successful of epoxidation of Kraft lignin. In addition, lignin based eopxy resin showed effective inhibitor for carbon steel in 3.5 wt. % NaCl electrolyte solutions


2020 ◽  
pp. 009524432092857
Author(s):  
Fozia Noreen ◽  
Ahtaram Bibi ◽  
Naila Khalid ◽  
Imran Ullah Khan

Novel azomethine ether-based compounds (A: N-((4-(9-(4-(phenylimino)methyl)phenoxy)nonyloxy)benzylidene)bezenamine and B: N-((4-(9-(4-(p-hydroxyphenylimino)methyl)phenoxy)nonyloxy)benzylidene)-4-hydroxybenzenamine) were synthesized by condensation reaction of dialdehyde, 4,4-(1,9-nonandiyle)bis(oxy)dibenzaldehyde with aromatic amines. Structures of synthesized compounds were successfully characterized by Fourier transform infrared (FTIR), ultraviolet–visible, proton nuclear magnetic resonance imaging and photoluminescence (PL) spectroscopy. The PL spectral analysis revealed that emission maxima of compounds A and B are at 475 and 500 nm, respectively, indicate blue and green light emission with large Stokes shift range (Δ λ ST, 109–138 nm). Two series of polymers: one azomethine-based polymers (C1–C5) and other without azomethine (H1–H4) were prepared by curing diglycidyl ether of bisphenol A with a synthesized curing agent (B) and commercial curing agent, respectively, in various proportions. The structural characterization of the resulting polymers was carried out by FTIR spectral analysis. Thermal properties revealed that azomethine-based polymers (C1–C5) were thermally stable up to 400°C as compared to H1–H4. The glass transition temperature of the polymers, determined by differential scanning calorimetry, was in the range 121–123°C.


1990 ◽  
Vol 9 (2) ◽  
pp. 153-162,228 ◽  
Author(s):  
Seiji BAN ◽  
Yosifumi TAKAHASHI ◽  
Hiroaki TANASE ◽  
Jiro HASEGAWA

2014 ◽  
Vol 953-954 ◽  
pp. 1246-1249 ◽  
Author(s):  
Chean Cheng Su ◽  
Chern Hwa Chen ◽  
Neng Lang Shih ◽  
Yin Shuo Li

Compatibilization via transreactions in blends of poly (butylene succinate-co-butylene terephthalate) [P(BS-co-BT)] with poly (hydroxy ether of bisphenol-A) (phenoxy) were investigated. Analyses were based on characterization using differential scanning calorimetry (DSC) and solid-state nuclear magnetic resonance (NMR). They revealed that the P(BS-co-BT)/phenoxy blend had a phase morphology that could be homogenized only following annealing at high temperatures. As-blended P(BS-co-BT)/phenoxy (50/50 composition) exhibited immiscible phases with two distinct Tgs, but the initially phase separated blends finally merged to form a homogeneous phase with a single Tgupon heating and annealing for 60 min at 280 °C. Chemical exchange reactions upon heat-annealing were likely to have caused the phase homogenization in the P(BS-co-BT)/phenoxy blend. NMR was performed on blend samples before and after they were heated to 280 °C, but the similarity of bonds made obtaining straight results difficult. Results of this study demonstrate phase homogenization can be brought only upon heat-annealing in the P(BS-co-BT)/phenoxy blend.


Sign in / Sign up

Export Citation Format

Share Document