Coaxial electrospinning and release characteristics of cellulose acetate-gelatin blend encapsulating a model drug

2013 ◽  
Vol 131 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Thitipun Kiatyongchai ◽  
Saowakon Wongsasulak ◽  
Tipaporn Yoovidhya
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1631
Author(s):  
Mariya Spasova ◽  
Nevena Manolova ◽  
Iliya Rashkov ◽  
Petya Tsekova ◽  
Ani Georgieva ◽  
...  

Novel eco-friendly fibrous materials with complex activities from cellulose acetate and cellulose acetate/polyethylene glycol (CA,PEG) containing 5-chloro-8-hydroxyquinoline as a model drug were obtained by electrospinning. Several methods, including scanning electron microscopy, X-ray diffraction analysis, ultraviolet-visible spectroscopy, water contact angle measurements, and mechanical tests, were utilized to characterize the obtained materials. The incorporation of PEG into the fibers facilitated the drug release. The amounts of the released drug from CA/5-Cl8Q and CA,PEG/5-Cl8Q were 78 ± 3.38% and 86 ± 3.02%, respectively (for 175 min). The antibacterial and antifungal activities of the obtained materials were studied. The measured zones of inhibition of CA/5-Cl8Q and CA,PEG/5-Cl8Q mats were 4.0 ± 0.18 and 4.5 ± 0.2 cm against S. aureus and around 4.0 ± 0.15 and 4.1 ± 0.22 cm against E. coli, respectively. The complete inhibition of the C. albicans growth was detected. The cytotoxicity of the obtained mats was tested toward HeLa cancer cells, SH-4 melanoma skin cells, and mouse BALB/c 3T3 fibroblasts as well. The CA/5-Cl8Q and CA,PEG/5-Cl8Q materials exhibited anticancer activity and low normal cell toxicity. Thus, the obtained fibrous materials can be suitable candidates for wound dressing applications and for application in local cancer treatment.


e-Polymers ◽  
2015 ◽  
Vol 15 (5) ◽  
pp. 311-315 ◽  
Author(s):  
Xia Wang ◽  
Xiao-Yan Li ◽  
Ying Li ◽  
Hua Zou ◽  
Deng Guang Yu ◽  
...  

AbstractThis paper reports the investigation about the usage of an epoxy (EP)-coated spinneret for the preparation of medicated electrospun nanofibers. Cellulose acetate (CA) and acetaminophen (APAP) were used as the polymeric carrier and model drug, respectively. The electrospinning was undertaken using both EP-coated spinneret and traditional stainless steel capillary as spinnerets. According to the images from scanning electron microscopy, it is obvious that the nanofibers produced using the EP-coated spinneret had a finer diameter and a narrower size distribution (450±90 nm) than nanofibers fabricated using stainless steel equivalent (660±180 nm). In vitro dissolution tests revealed that the sustained-release profiles of nanofibers from the EP-coated spinneret were superior to those of their stainless steel equivalents, although APAP existed in a similar amorphous state in both nanofibers. Because the EP-coated material can exploit the electrical forces more effectively than its steel analogue, it can enhance the electrospinning technique for producing polymeric functional nanofibers.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Qing Wang ◽  
Deng-Guang Yu ◽  
Sun-Yi Zhou ◽  
Chen Li ◽  
Min Zhao

AbstractFacile methods to improve the dissolution rate of poorly water-soluble drugs are highly sought after. In this study, a modified coaxial electrospinning process was exploited to create medicated amorphous nanocomposites, an approach characterized by the application of a Teflon-coated coaxial spinneret. The hydrophilic polymer hydroxypropyl methylcellulose and the active ingredient tamoxifen citrate (TAM) were selected as the drug carrier and model drug, respectively. Their electrospun nanocomposites showed linear morphology with the drug presented in an amorphous state. The loaded cargoes could be released from the nanocomposites simultaneously when they were placed in the dissolution media, showing faster dissolution rates than their counterparts (physical mixtures). Based on the reasonable application of the polymeric carrier, the reported protocols not only provided an approach to enhance the dissolution of poorly water-soluble drugs, but also exhibited a method to facilitate the implementation of coaxial electrospinning.


2021 ◽  
Author(s):  
Hye Jin Kim ◽  
Ji Hun Park ◽  
Syifa Salsabila ◽  
Changsang Yun

Abstract Protective clothing for health workers requires heat transfer in hot and humid environments. To study the thermal conduction of phase-change materials and protect them from leakage, we selected skin-friendly shea-butter due to its suitable melting temperature, and the electrospinning processibility of biocompatible cellulose acetate. The shea-butter as a phase-change material was encapsulated in electrospun cellulose acetate fibres within a core/sheath structure, which was stabilised by two concentric Taylor cones during coaxial electrospinning. Transmission and scanning electron microscopy revealed a blood-in-tube vessel-like morphology. Next, differential scanning calorimetry and thermogravimetric analyses confirmed the heat capacity of shea-butter (latent heat of fusion: 42.73 J/g; thermal conductivity: 1.407 W/m∙K). The flow rate of the core was proportional to the heat capacity of the shea-butter/cellulose acetate fibres. This was consistent with the finding that the electrospun fibres of the highest-ratio shea-butter (16.19%) had the highest thermal conductivity (0.421 J/g∙K). The shea-butter:cellulose acetate ratio was approximately 15:80. The efficacy of heat transfer for the core/sheath fibres in human clothing was assessed by measuring skin temperatures at 13 sites in six males aged 25 to 35 under two conditions: wearing a mask and hood with attached cellulose acetate fibres in the presence and absence of shea-butter. The mean difference in skin temperatures (0.5 ℃) between the two conditions was significant. Coaxial electrospinning of shea-butter/cellulose acetate fibres is therefore promising for protective clothing with efficient heat-transfer in the use of a large area.


2012 ◽  
Vol 90 (2) ◽  
pp. 1016-1023 ◽  
Author(s):  
Deng-Guang Yu ◽  
Jia-Hui Yu ◽  
Lan Chen ◽  
Gareth R. Williams ◽  
Xia Wang

2012 ◽  
Vol 76 ◽  
pp. 250-254 ◽  
Author(s):  
M.M. Castillo-Ortega ◽  
A.G. Montaño-Figueroa ◽  
D.E. Rodríguez-Félix ◽  
G.T. Munive ◽  
P.J. Herrera-Franco

Cellulose ◽  
2013 ◽  
Vol 20 (1) ◽  
pp. 379-389 ◽  
Author(s):  
Deng-Guang Yu ◽  
Xiao-Yan Li ◽  
Xia Wang ◽  
Wei Chian ◽  
Yao-Zu Liao ◽  
...  

Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Sign in / Sign up

Export Citation Format

Share Document