Thermomechanical and electroactive behavior of a thermosetting styrene-based carbon black shape-memory composite

2017 ◽  
Vol 135 (13) ◽  
pp. 45978 ◽  
Author(s):  
Xin Lan ◽  
Liwu Liu ◽  
Yanju Liu ◽  
Jinsong Leng
2020 ◽  
Vol 40 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Tianning Ren ◽  
Guangming Zhu ◽  
Yi Liu ◽  
Xiao Hou

AbstractThe objective of this work is to investigate the thermomechanical, electrical, and shape-memory properties of bisphenol A-type cyanate ester (BACE)/polybutadiene epoxy (PBEP)/carbon black (CB) composite and assess its feasibility applied for deployable structure. Using a BACE/PBEP polymer as matrix and superconducting carbon black (CB) and short carbon fibers (SCFs) as reinforcing material, the shape memory composite was prepared by compression molding. The effects of CB and SCF content on the shape memory properties of the composites were investigated. The results demonstrate that the glass transition temperature (Tg) and the storage modulus of the composites increases as SCFs content increase. Because of the synergic effect of CB and SCFs, the shape memory composites exhibit excellent shape memory performance, and the shape recovery ratio is about 100%. With the increase in SCF content, the recovery time decreased, and the volume electrical resistivity of the composite could decrease by adding a small amount of SCFs. According to the above results, a shape memory polymer composite deployable structure was prepared.


2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


Author(s):  
Leyla Uranbey ◽  
Halil Ibrahim Unal ◽  
Gokce Calis ◽  
Omer Yunus Gumus ◽  
Sukran Katmer ◽  
...  

2021 ◽  
Vol 119 (18) ◽  
pp. 181601
Author(s):  
Sizhu Wu ◽  
Yue Wang ◽  
Chao Chen ◽  
Yubin Peng ◽  
Longfu Li ◽  
...  
Keyword(s):  

Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Giovanni Matteo Tedde ◽  
Fabrizio Quadrini

Shape memory polymers (SMP) and composites (SMPC) may be used for many applications in Space, from self-deployable structures (such as solar sails, panels, shields, booms and antennas), to grabbing systems for Space debris removal, up to new-concept actuators for telescope mirror tuning. Experiments on the International Space Station are necessary for testing prototypes in relevant environment, above all for the absence of gravity which affects deployment of slender structures but also to evaluate the aging effects of the Space environment. In fact, several aging mechanisms are possible, from polymer cracking to cross-linking and erosion, and different behaviors are expected as well, from consolidating the temporary shape to composite degradation. Evaluating the possibility of shape recovery because of sun exposure is another interesting point. In this study, a possible experiment on the ISS is shown with the aim of evaluating the aging effect of Space on material performances. The sample structure is described as well as the testing strategy.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 807 ◽  
Author(s):  
Lin Xia ◽  
Han Gao ◽  
Weina Bi ◽  
Wenxin Fu ◽  
Guixue Qiu ◽  
...  

Shape memory composites of trans-1,4-polyisoprene (TPI) and low-density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon black (CB) was introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal and shape memory properties of the TPI/LDPE/CB composites were investigated in this study. In these composites, the crosslinked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a reversible domain in shape memory behavior. We found the mechanical properties of composites were promoted significantly with an increase of CB content, accompanied with the deterioration of shape memory properties of composites. When CB dosage was 5 parts per hundred of rubber composites (phr), best shape memory property of composites was obtained with a shape fixity ratio of 95.1% and a shape recovery ratio of 95.0%.


2014 ◽  
Vol 783-786 ◽  
pp. 2509-2516 ◽  
Author(s):  
Fabrizio Quadrini

Shape memory composites and structures were produced by using carbon fiber reinforced prepregs and a shape memory epoxy resin. The matrix of the prepregs was an epoxy resin as well but without remarkable shape memory properties. This way, two different technical solutions were adopted. Shape memory composite tubes and plates were made by adding a shape memory layer between two carbon fiber reinforced skins. An optimal adhesion between the different layers was achieved thanks to the compatibility of the prepreg matrix and the shape memory material. Shape memory composite structures were also produced by joining composite shells with shape memory foams. Mechanical, dynamic mechanical and shape recovery tests were carried out to show the properties of the composite materials and structures. Results confirm the ability of this class of materials to easily change their shape without affecting the mechanical stiffness of the recovered structures.


Sign in / Sign up

Export Citation Format

Share Document