Mechanical properties of 3D printed polycaprolactone honeycomb structure

2017 ◽  
Vol 135 (12) ◽  
pp. 46018 ◽  
Author(s):  
Pengfei Zhang ◽  
Donald Joseph Arceneaux ◽  
Ahmed Khattab

2020 ◽  
Vol 24 ◽  
pp. 101173 ◽  
Author(s):  
V.A. Lvov ◽  
F.S. Senatov ◽  
A.M. Korsunsky ◽  
A.I. Salimon


Author(s):  
Binjamin Perelman ◽  
Vishal S. Sharma

Abstract The Honeycomb structure is one of the most common natural structures used in sandwich panel cores. The Enamel structure’s mechanical properties were compared to the Honeycomb structure’s mechanical properties to investigate if the Enamel structure can improve the compressive strength, stiffness and energy absorption capabilities of sandwich panel cores and potentially replace the common Honeycomb structure. Also, the optimal cellular configurations for the Honeycomb and Enamel structures were explored. Indeed, it was found the Enamel structure can potentially replace the Honeycomb structure and a wall thickness of 1.2 mm and a wall length/cell radius of 8.14 mm will maximize the natural structures mechanical properties. Furthermore, it was found that both the natural structures have good compressive strength. Therefore, the natural structures with their optimal cellular configurations were integrated into a novel automobile floor mat to ensure the mat possesses good compressive strength to resist failure or permanent deformation. Moreover, the novel automobile floor mat has a design feature that offers an efficient debris capturing and removal system that adds value to the automobile floor mat.



Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1804
Author(s):  
Agnese Piovesan ◽  
Valérie Vancauwenberghe ◽  
Wondwosen Aregawi ◽  
Mulugeta A. Delele ◽  
Evi Bongaers ◽  
...  

Additive manufacturing or 3D printing can be applied in the food sector to create food products with personalized properties such as shape, texture, and composition. In this article, we introduce a computer aided engineering (CAE) methodology to design 3D printed food products with tunable mechanical properties. The focus was on the Young modulus as a proxy of texture. Finite element modelling was used to establish the relationship between the Young modulus of 3D printed cookies with a honeycomb structure and their structure parameters. Wall thickness, cell size, and overall porosity were found to influence the Young modulus of the cookies and were, therefore, identified as tunable design parameters. Next, in experimental tests, it was observed that geometry deformations arose during and after 3D printing, affecting cookie structure and texture. The 3D printed cookie porosity was found to be lower than the designed one, strongly influencing the Young modulus. After identifying the changes in porosity through X-ray micro-computed tomography, a good match was observed between computational and experimental Young’s modulus values. These results showed that changes in the geometry have to be quantified and considered to obtain a reliable prediction of the Young modulus of the 3D printed cookies.





2021 ◽  
pp. 1-18
Author(s):  
N. Vinoth Babu ◽  
N. Venkateshwaran ◽  
N. Rajini ◽  
Sikiru Oluwarotimi Ismail ◽  
Faruq Mohammad ◽  
...  




Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1983
Author(s):  
Olimpia Basurto-Vázquez ◽  
Elvia P. Sánchez-Rodríguez ◽  
Graham J. McShane ◽  
Dora I. Medina

Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load–displacement curve and major absorption of energy.



Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1394
Author(s):  
Yong Sang Cho ◽  
So-Jung Gwak ◽  
Young-Sam Cho

In this study, we investigated the dual-pore kagome-structure design of a 3D-printed scaffold with enhanced in vitro cell response and compared the mechanical properties with 3D-printed scaffolds with conventional or offset patterns. The compressive modulus of the 3D-printed scaffold with the proposed design was found to resemble that of the 3D-printed scaffold with a conventional pattern at similar pore sizes despite higher porosity. Furthermore, the compressive modulus of the proposed scaffold surpassed that of the 3D-printed scaffold with conventional and offset patterns at similar porosities owing to the structural characteristics of the kagome structure. Regarding the in vitro cell response, cell adhesion, cell growth, and ALP concentration of the proposed scaffold for 14 days was superior to those of the control group scaffolds. Consequently, we found that the mechanical properties and in vitro cell response of the 3D-printed scaffold could be improved by kagome and dual-pore structures through DfAM. Moreover, we revealed that the dual-pore structure is effective for the in vitro cell response compared to the structures possessing conventional and offset patterns.



2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.



2020 ◽  
Author(s):  
Qinfei Xu ◽  
Yingshuang Shang ◽  
Zilong Jiang ◽  
Zhaoyang Wang ◽  
Chenyi Zhou ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document