Assessing the Mechanical Properties of 3D Printed Bio-Inspired Structures and Integrating Them Into a Product

Author(s):  
Binjamin Perelman ◽  
Vishal S. Sharma

Abstract The Honeycomb structure is one of the most common natural structures used in sandwich panel cores. The Enamel structure’s mechanical properties were compared to the Honeycomb structure’s mechanical properties to investigate if the Enamel structure can improve the compressive strength, stiffness and energy absorption capabilities of sandwich panel cores and potentially replace the common Honeycomb structure. Also, the optimal cellular configurations for the Honeycomb and Enamel structures were explored. Indeed, it was found the Enamel structure can potentially replace the Honeycomb structure and a wall thickness of 1.2 mm and a wall length/cell radius of 8.14 mm will maximize the natural structures mechanical properties. Furthermore, it was found that both the natural structures have good compressive strength. Therefore, the natural structures with their optimal cellular configurations were integrated into a novel automobile floor mat to ensure the mat possesses good compressive strength to resist failure or permanent deformation. Moreover, the novel automobile floor mat has a design feature that offers an efficient debris capturing and removal system that adds value to the automobile floor mat.

2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4066
Author(s):  
Marta Czajkowska ◽  
Ewa Walejewska ◽  
Łukasz Zadrożny ◽  
Monika Wieczorek ◽  
Wojciech Święszkowski ◽  
...  

This study was conducted to test possibilities of application of 3D printed dental models (DMs) in terms of their accuracy and physical properties. In this work, stone models of mandibles were cast from alginate impressions of 10 patients and scanned in order to obtain 3D printed acrylic replicas. The diagnostic value was tested as matching of model scans on three levels: peak of cusps, occlusal surface, and all teeth surfaces. The mechanical properties of acrylic and stone samples, specifically the impact strength, shore D hardness, and flexural and compressive strength were investigated according to ISO standards. The matching of models’ surfaces was the highest on the level of peaks of cusps (average lack of deviations, 0.21 mm) and the lowest on the level of all teeth surfaces (average lack of deviations, 0.64 mm). Acrylic samples subjected to mechanical testing, as expected, showed higher mechanical properties as compared to the specimens made of dental stone. In the present study we demonstrated that 3D printed acrylic models could be ideal representatives in the case of use as a diagnostic tool and as a part of medical records. The acrylic samples exhibited not only higher mechanical properties, but also showed better accuracy comparing to dental stone.


2020 ◽  
Vol 218 ◽  
pp. 03019
Author(s):  
Xiaohong Yin ◽  
Xiaodong Wang ◽  
Yuan Fang ◽  
Zhu Ding

Some researches have been conducted on the application of geopolymer in 3D printing. However, there is no publication about the high-temperature properties of 3D printed geopolymer made from fly ash, slag, and metakaolin. This paper presents the experimental research on the mechanical properties of 3D printed geopolymer after being exposed to elevated empratures. The effects of curing age on high-temperature properties are analyzed. The heating temperasures were 300 °C, 600 °C, and 900 °C, and the holding time was one hour. After exposure to temperatures, the flexural strength of 3D printed geopolymer exhibited different change trends with increasing curing age for different exposure temperatures. Before and after exposure to elevated temperature, the 3D printed geopolymer experienced significant anisotropic compressive strengths. The change trends of compressive strength at different exposure temperatures wit hincreasing curing ages were different from each other on different loading directions.


2020 ◽  
Vol 24 ◽  
pp. 101173 ◽  
Author(s):  
V.A. Lvov ◽  
F.S. Senatov ◽  
A.M. Korsunsky ◽  
A.I. Salimon

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2059
Author(s):  
Leilei Yan ◽  
Keyu Zhu ◽  
Yunwei Zhang ◽  
Chun Zhang ◽  
Xitao Zheng

Polylactic acid (PLA) hexagonal honeycomb structures were fabricated by using 3D-printing technology. By filling with absorbent polymethacrylimide (PMI) foam, a novel absorbent-foam-filled 3D-printed honeycomb was obtained. The in-plane (L- and W-direction) and out-of-plane (T-direction) compressive performances were studied experimentally and numerically. Due to absorbent PMI foam filling, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass of absorbent-foam-filled honeycomb under L-direction were increased by 296.34%, 168.75%, 505.57%, and 244.22%, respectively. Moreover, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass, under W-direction, also have increments of 211.65%, 179.85, 799.45%, and 413.02%, respectively. However, for out-of-plane compression, the compressive strength and energy absorption per unit volume were enhanced, but the density has also been increased; thus, it is not competitive in energy absorption per unit mass. Failure mechanism and dimension effects of absorbent-foam-filled honeycomb were also considered. The approach of absorbent foam filling made the 3D-printed honeycomb structure more competitive in electromagnetic wave stealth applications, while acting simultaneously as load-carrying structures.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4104 ◽  
Author(s):  
Hojae Lee ◽  
Jang-Ho Jay Kim ◽  
Jae-Heum Moon ◽  
Won-Woo Kim ◽  
Eun-A Seo

The mechanical properties of 3D-printed mortars are determined in terms of their compressive and direct tensile bond strengths. To determine such properties using existing methods, a preliminary experiment was conducted. The compressive strength of the printed mortar was compared to mold-casted specimens and it was found that the compressive strength decreased by ~30%. Among the fabrication variables, an increase in nozzle height negatively influenced the direct tensile bond strength. For the same conditions and age, the direct tensile strength decreased by as much as 16–29% when the number of layers increased from 2 to 6. When the specimens were fabricated using a specially designed stainless steel frame and core drill, followed by extraction and the application of physical impact, the 28 days compressive strength of the specimen decreased by ~50%.


Author(s):  
Sumair F. Sunny ◽  
Saman Rostami ◽  
Arif S. Malik

Improved simulations are created to mimic the nature of compressive failure related to macro-structure and loading direction in fuse deposition modeling (FDM) additively manufactured nylon parts. Unlike prior work, the simulations incorporate internal fluid cavities to model the effects of entrapped gas within the internal geometric voids. Until now, such modeling technique has only been applied in simulations involving polymer foams. Experimental tests are also conducted to provide a baseline comparisons. The nylon FDM specimens studied vary in terms of infill pattern (hexagonal, triangular, and rectilinear) and infill density. Compressive loads are applied in orthogonal part directions to examine degree of anisotropic compressive strength at onset of permanent deformation. A comparative simulation study with and without the fluid cavity modeling reveals how the accuracy of the results improves when the effects of the entrapped gas is included. The aim of the work is to help establish an improved general method for creating simulations of sufficient fidelity to predict part macro-strengths for various 3D printed infill patterns and densities without the need for time-consuming experimental analyses for every variation in geometry.


2017 ◽  
Vol 135 (12) ◽  
pp. 46018 ◽  
Author(s):  
Pengfei Zhang ◽  
Donald Joseph Arceneaux ◽  
Ahmed Khattab

MRS Advances ◽  
2018 ◽  
Vol 4 (24) ◽  
pp. 1383-1392
Author(s):  
Amirhossein Hakamivala ◽  
Amirali Nojoomi ◽  
Alieh Aminian ◽  
Arghavan Farzadi ◽  
Noor Azuan Abu Osman

ABSTRACTInvestigating the mechanical properties and dimensional accuracy of 3D printed parts is an important step towards achieving optimum printing conditions. This condition, which leads to the fabrication of parts with appropriate mechanical properties and accuracy, is achieved by studying the effect of different process parameters on the final structure. In this work, Response Surface Methodology (RSM) was employed to design specified experiments to investigate the effects of layer thickness, printing orientation and delay, on the compressive strength and dimensional error of the parts. The results show that an increase in the delay time in X orientation results in better binder spreading and uniformity followed by improvement in the compression strength. Furthermore, more binder spreads in the vertical direction leads to the higher dimensional error in the Z direction. The results proved that the RSM provides a time and cost-efficient design to print the prototypes with optimum strength and dimensional error.


2021 ◽  
pp. 109963622110369
Author(s):  
Fawad Tariq ◽  
Muhammad Uzair ◽  
Madni Shifa

The present article discusses the effect of impact damage on residual compressive strength of aluminum alloy honeycomb sandwich panel (HSP). Multiple dents were created in HSP by penetrating indenters of different diameters through quasi-static indentation technique. The damaged samples were compressed edge-wise for determination of in-plane compression after impact (CAI) strength. The failed samples were macroscopically examined to reveal the underlying damage mode. Experimental results showed that the presence of multiple dents of 5 mm size or less do not appreciably affect the CAI strength of aluminum alloy HSP. However, moderate reduction in CAI strength was observed in case of multiple dents of 10 mm. Compressive strength was reduced by 18% in presence of four dents of 10 mm diameter. The maximum reduction in CAI strength of up to 30% was observed in samples impact damaged by 15 mm indenter. Examination of failed HSP showed that the maximum load was sustained taken by aluminum facesheet whereas the contribution of honeycomb core was insignificant. Research findings exhibit that the CAI strength of aluminum alloy honeycomb structure is not sensitive to impact damages size less than 5 mm diameter however dents above 5 mm size can seriously impair mechanical performance and structural integrity.


Sign in / Sign up

Export Citation Format

Share Document