Sea anemones in the marine aquarium trade: Market preferences indicate opportunities for mariculture and conservation

Author(s):  
Nicola Fraser ◽  
Sangeeta Mangubhai ◽  
Karina Hall ◽  
Anna Scott
Coral Reefs ◽  
2005 ◽  
Vol 24 (4) ◽  
pp. 564-573 ◽  
Author(s):  
Craig S. Shuman ◽  
Gregor Hodgson ◽  
Richard F. Ambrose

2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


2019 ◽  
Vol 18 (30) ◽  
pp. 2555-2566 ◽  
Author(s):  
Bhaswati Chatterjee

The resistance to chemotherapeutics by the cancerous cells has made its treatment more complicated. Animal venoms have emerged as an alternative strategy for anti-cancer therapeutics. Animal venoms are cocktails of complex bioactive chemicals mainly disulfide-rich proteins and peptides with diverse pharmacological actions. The components of venoms are specific, stable, and potent and have the ability to modify their molecular targets thus making them good therapeutics candidates. The isolation of cancer-specific components from animal venoms is one of the exciting strategies in anti-cancer research. This review highlights the identified venom peptides and proteins from different venomous animals like snakes, scorpions, spiders, bees, wasps, snails, toads, frogs and sea anemones and their anticancer activities including inhibition of proliferation of cancer cells, their invasion, cell cycle arrest, induction of apoptosis and the identification of involved signaling pathways.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


1995 ◽  
Vol 9 (5) ◽  
pp. 1304-1306
Author(s):  
STEPHEN SPOTTE ◽  
PATRICIA M. BUBUCIS
Keyword(s):  

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 452
Author(s):  
Lauren M. Ashwood ◽  
Michela L. Mitchell ◽  
Bruno Madio ◽  
David A. Hurwood ◽  
Glenn F. King ◽  
...  

Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple actiniarian species. In this study, we assess whether morphological variants of tentacles are associated with distinct toxin expression profiles and investigate the functional significance of specialised tentacular structures. Using five sea anemone species, we analysed differential expression of toxin-like transcripts and found that expression levels differ significantly across tentacular structures when substantial morphological variation is present. Therefore, the differential expression of toxin genes is associated with morphological variation of tentacular structures in a tissue-specific manner. Furthermore, the unique toxin profile of spherical tentacular structures in families Aliciidae and Thalassianthidae indicate that vesicles and nematospheres may function to protect branched structures that host a large number of photosynthetic symbionts. Thus, hosting zooxanthellae may account for the tentacle-specific toxin expression profiles observed in the current study. Overall, specialised tentacular structures serve unique ecological roles and, in order to fulfil their functions, they possess distinct venom cocktails.


Sign in / Sign up

Export Citation Format

Share Document