Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo

2015 ◽  
Vol 10 (10) ◽  
pp. 1515-1528 ◽  
Author(s):  
Molly E. Kupfer ◽  
Brenda M. Ogle
2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


2015 ◽  
Vol 10s1 ◽  
pp. BMI.S20057 ◽  
Author(s):  
Prafulla Chandra ◽  
Sang Jin Lee

The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and adult stem cells are potentially useful for cell-based approaches; however, regulating stem cell behavior remains a major challenge in their clinical use. Most of the current approaches for controlling stem cell fate do not fully address all of the complex signaling pathways that drive stem cell behaviors in their natural microenvironments. To overcome this limitation, a new generation of biomaterials is being developed for use as three-dimensional synthetic microenvironments that can mimic the regulatory characteristics of natural extracellular matrix (ECM) proteins and ECM-bound growth factors. These synthetic microenvironments are currently being investigated as a substrate with surface immobilization and controlled release of bioactive molecules to direct the stem cell fate in vitro, as a tissue template to guide and improve the neo-tissue formation both in vitro and in vivo, and as a delivery vehicle for cell therapy in vivo. The continued advancement of such an intelligent biomaterial system as the synthetic extracellular microenvironment holds the promise of improved therapies for numerous debilitating medical conditions for which no satisfactory cure exists today.


2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Roméo Sébastien Blanc ◽  
Gillian Vogel ◽  
Xing Li ◽  
Zhenbao Yu ◽  
Shawn Li ◽  
...  

ABSTRACT Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving determinant transcription factors such as Pax7, Myf5, MyoD, and MyoG. Recently, there have been several reports about the role of arginine methylation as a requirement for epigenetically mediated control of muscle regeneration. Here we report that the protein arginine methyltransferase 1 (PRMT1) is expressed in MSCs and that conditional ablation of PRMT1 in MSCs using Pax7CreERT2 causes impairment of muscle regeneration. Importantly, PRMT1-deficient MSCs have enhanced cell proliferation after injury but are unable to terminate the myogenic differentiation program, leading to regeneration failure. We identify the coactivator of Six1, Eya1, as a substrate of PRMT1. We show that PRMT1 methylates Eya1 in vitro and that loss of PRMT1 function in vivo prevents Eya1 methylation. Moreover, we observe that PRMT1-deficient MSCs have reduced expression of Eya1/Six1 target MyoD due to disruption of Eya1 recruitment at the MyoD promoter and subsequent Eya1-mediated coactivation. These findings suggest that arginine methylation by PRMT1 regulates muscle stem cell fate through the Eya1/Six1/MyoD axis.


2010 ◽  
Vol 1 (5) ◽  
pp. 38 ◽  
Author(s):  
Matthew Raab ◽  
Jae-Won Shin ◽  
Dennis E Discher

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Fei Xing ◽  
Lang Li ◽  
Changchun Zhou ◽  
Cheng Long ◽  
Lina Wu ◽  
...  

It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.


Author(s):  
Somyot Chirasatitsin ◽  
Priyalakshmi Viswanathan ◽  
Giuseppe Battaglia ◽  
Adam J. Engler

Adhesions are important cell structures required to transduce a variety of chemical and mechanics signals from outside-in and vice versa, all of which regulate cell behaviors, including stem cell differentiation (1). Though most biomaterials are coated with an adhesive ligand to promote adhesion, they do not often have a uniform distribution that does not match the heterogeneously adhesive extracellular matrix (ECM) in vivo (2). We have previously shown that diblock copolymer (DBC) mixtures undergo interface-confined de-mixing to form nanodomins of one copolymer in another (3). Here we demonstrate how diblock copolymer mixtures can be made into foams with nanodomains to better recapitulate native ECM adhesion regions and influence cell adhesion.


Science ◽  
2019 ◽  
Vol 366 (6466) ◽  
pp. 734-738 ◽  
Author(s):  
Antoine de Morree ◽  
Julian D. D. Klein ◽  
Qiang Gan ◽  
Jean Farup ◽  
Andoni Urtasun ◽  
...  

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3′ untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1873 ◽  
Author(s):  
Andrea Remuzzi ◽  
Barbara Bonandrini ◽  
Matteo Tironi ◽  
Lorena Longaretti ◽  
Marina Figliuzzi ◽  
...  

Stem cell fate and behavior are affected by the bidirectional communication of cells and their local microenvironment (the stem cell niche), which includes biochemical cues, as well as physical and mechanical factors. Stem cells are normally cultured in conventional two-dimensional monolayer, with a mechanical environment very different from the physiological one. Here, we compare culture of rat mesenchymal stem cells on flat culture supports and in the “Nichoid”, an innovative three-dimensional substrate micro-engineered to recapitulate the architecture of the physiological niche in vitro. Two versions of the culture substrates Nichoid (single-layered or “2D Nichoid” and multi-layered or “3D Nichoid”) were fabricated via two-photon laser polymerization in a biocompatible hybrid organic-inorganic photoresist (SZ2080). Mesenchymal stem cells, isolated from rat bone marrow, were seeded on flat substrates and on 2D and 3D Nichoid substrates and maintained in culture up to 2 weeks. During cell culture, we evaluated cell morphology, proliferation, cell motility and the expression of a panel of 89 mesenchymal stem cells’ specific genes, as well as intracellular structures organization. Our results show that mesenchymal stem cells adhered and grew in the 3D Nichoid with a comparable proliferation rate as compared to flat substrates. After seeding on flat substrates, cells displayed large and spread nucleus and cytoplasm, while cells cultured in the 3D Nichoid were spatially organized in three dimensions, with smaller and spherical nuclei. Gene expression analysis revealed the upregulation of genes related to stemness and to mesenchymal stem cells’ features in Nichoid-cultured cells, as compared to flat substrates. The observed changes in cytoskeletal organization of cells cultured on 3D Nichoids were also responsible for a different localization of the mechanotransducer transcription factor YAP, with an increase of the cytoplasmic retention in cells cultured in the 3D Nichoid. This difference could be explained by alterations in the import of transcription factors inside the nucleus due to the observed decrease of mean nuclear pore diameter, by transmission electron microscopy. Our data show that 3D distribution of cell volume has a profound effect on mesenchymal stem cells structure and on their mechanobiological response, and highlight the potential use of the 3D Nichoid substrate to strengthen the potential effects of MSC in vitro and in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 800-800
Author(s):  
Sonia Cellot ◽  
Jana Krosl ◽  
Keith Humphries ◽  
Guy Sauvageau

Abstract We previously reported the generation of pluripotent and ultracompetitive HSCs through modulation of Hoxb4 and Pbx1 levels. These Hoxb4hiPbx1lo HSCs display a tremendous regenerative potential, yet they are still fully responsive to in vivo regulatory signals that control stem cell pool size (20 000 HSCmouse) and differentiation pathways. Further work in our laboratory attempted to circumvent these physiological constraints by expanding Hoxb4hiPbx1lo transduced HSCs in vitro, and hence revealing their intrinsic expansion potential. Independent experiments were performed where primary mouse BM cells were co-infected with retroviruses encoding antisense Pbx1 cDNA plus YFP, and Hoxb4 plus GFP (double gene transfer ranged between 20–50%). Hoxb4hiPbx1lo HSCs measured using the CRU assay expanded by 105-fold during a 12 day in vitro culture. Following serial transplantations, these cells displayed an additional 4–5 log expansion in vivo. Total stem cell content per animal remained within normal limits. Southern blot analyses of proviral integrations showed that the expansion was polyclonal, and analyses of individually expanded clones provided a molecular proof of in vitro self-renewal (SR). This unprecedented level of HSC expansion in such a short time course (105-fold in 12 days) implies an absolute HSC doubling time of approximately 17 hours in our culture, raising the possibility that virtually all dividing HSCs undergo self-renewal. This analysis prompted us to dissect the impact of Hoxb4 on cell proliferation versus cell fate (SR?). When analyzed during the period of maximal HSC expansion, the cell cycle distribution of Sca+ or Sca+Lin− cells were comparable between the cultures initiated with neo control versus Hoxb4 BM cells (CTL vs Hoxb4: G0/G1: 66% vs 83%; S: 15% vs 9%; G2/M: 18% vs 7%). Correspondingly, CFSE tracking studies confirmed the identical, or even lower, number of cellular divisions in Sca+ cells isolated from cultures initiated with Hoxb4 versus neo transduced cells. Annexin V studies precluded protection from apoptosis as the major mechanism to increase HSC numbers since similar results (3–10% positive cells) were observed in the Hoxb4 versus neo-transduced cells. In summary, our studies support the emerging concept that distinct molecular pathways regulate cell proliferation and self-renewal, suggesting that Hoxb4 + antisense Pbx1 predominantly triggers self-renewal over HSC proliferation.


Sign in / Sign up

Export Citation Format

Share Document