Development of a novel non‐invasive quantitative method to monitor Siraitia grosvenorii cell growth and browning degree using an integrated computer‐aided vision technology and machine learning

Author(s):  
Xiaofeng Zhu ◽  
Ali Mohisn ◽  
Waqas Qamar Zaman ◽  
Zebo Liu ◽  
Zejian Wang ◽  
...  
2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
J Bote ◽  
J F Ortega-Morán ◽  
C L Saratxaga ◽  
B Pagador ◽  
A Picón ◽  
...  

Abstract INTRODUCTION New non-invasive technologies for improving early diagnosis of colorectal cancer (CRC) are demanded by clinicians. Optical Coherence Tomography (OCT) provides sub-surface structural information and offers diagnosis capabilities of colon polyps, further improved by machine learning methods. Databases of OCT images are necessary to facilitate algorithms development and testing. MATERIALS AND METHODS A database has been acquired from rat colonic samples with a Thorlabs OCT system with 930nm centre wavelength that provides 1.2KHz A-scan rate, 7μm axial resolution in air, 4μm lateral resolution, 1.7mm imaging depth in air, 6mm x 6mm FOV, and 107dB sensitivity. The colon from anaesthetised animals has been excised and samples have been extracted and preserved for ex-vivo analysis with the OCT equipment. RESULTS This database consists of OCT 3D volumes (C-scans) and 2D images (B-scans) of murine samples from: 1) healthy tissue, for ground-truth comparison (18 samples; 66 C-scans; 17,478 B-scans); 2) hyperplastic polyps, obtained from an induced colorectal hyperplastic murine model (47 samples; 153 C-scans; 42,450 B-scans); 3) neoplastic polyps (adenomatous and adenocarcinomatous), obtained from clinically validated Pirc F344/NTac-Apcam1137 rat model (232 samples; 564 C-scans; 158,557 B-scans); and 4) unknown tissue (polyp adjacent, presumably healthy) (98 samples; 157 C-scans; 42,070 B-scans). CONCLUSIONS A novel extensive ex-vivo OCT database of murine CRC model has been obtained and will be openly published for the research community. It can be used for classification/segmentation machine learning methods, for correlation between OCT features and histopathological structures, and for developing new non-invasive in-situ methods of diagnosis of colorectal cancer.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Chen-Yi Xie ◽  
Chun-Lap Pang ◽  
Benjamin Chan ◽  
Emily Yuen-Yuen Wong ◽  
Qi Dou ◽  
...  

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Rima Hajjo ◽  
Dima A. Sabbah ◽  
Sanaa K. Bardaweel ◽  
Alexander Tropsha

The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.


Sign in / Sign up

Export Citation Format

Share Document