Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain

2021 ◽  
Author(s):  
Wenfei Tian ◽  
Tara L. Wilson ◽  
Gengjun Chen ◽  
Mary J. Guttieri ◽  
Nathan O. Nelson ◽  
...  
2017 ◽  
Vol 35 (No. 6) ◽  
pp. 469-475 ◽  
Author(s):  
Filiz Bilge Ertekin ◽  
Korkmaz Nazli ◽  
Budak Nilgun H ◽  
Seydim Atif C ◽  
Seydim Zeynep B Guzel

The antioxidant activity and content of phenolic substances in vegetable broths were determined. Green beans, beetroots, courgettes, onions, parsley, carrots, cabbages, celery, broccoli, spinach, cauliflowers, and tomatoes were subjected to boiling. Fresh vegetables and vegetable broths were analysed for ascorbic acid content, total phenolic content, ORAC and TEAC values. Phenolic acids were quantified using HPLC. The ascorbic acid content of vegetables ranged from 5–109 mg/100 ml, while no ascorbic acids could be detected in vegetable broths. Total phenolic content was between 17–1729 mg GAE/l for all samples. ORAC and TEAC values of vegetable broths were between 0–3 µmol TE/ml and 0–2 µmol TE/ml, respectively. Gallic, chlorogenic, caffeic, p-coumaric, and ferulic acid were detected in both fresh vegetables and vegetable broths. The highest phenolic acid content was observed in water in which beetroots were boiled. It was found that the vegetable broths of beetroots, celery stalks, cabbages, parsley and broccoli harboured remarkable antioxidant activity.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 498C-498
Author(s):  
M.S. Padda ◽  
D.H. Picha

Antioxidant activity and phenolic content of sweetpotato root and leaf tissues were quantified at different developmental stages. 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical method was used to measure antioxidant activity and total phenolic content was quantified by spectrophotometry using Folin-Denis reagent. Individual phenolic acids were quantified using reversed phase high performance liquid chromatography. Antioxidant activity and phenolic content decreased with root development and leaf maturity. Roots at the initial stages of development (about 4.0 g root weight) had a higher antioxidant activity and phenolic content compared to fully developed roots. Phenolic content in fully developed roots was significantly higher in the cortex tissue than internal pith tissue. The highest total phenolic content and antioxidant activity was found in cortex tissue at the initial stage of development (10.3 mg chlorogenic acid eq/g dry tissue weight and 9.7 mg Trolox eq/gdry tissue weight, respectively). Sweetpotato leaves had a significantly higher phenolic content and antioxidant activity than roots. Immature unfolded leaves had the highest total phenolic content (88.5 mg chlorogenic acid eq/g dry tissue weight) and antioxidant activity (99.6 mg Trolox eq/g dry tissue weight). Chlorogenic acid was the major phenolic acid in root and leaf tissues with the exception of young immature leaves in which the predominant phenolic acid was 3,5-dicaffeoylquinic acid.


Author(s):  
Bing Zhou ◽  
Zhao Jin ◽  
Paul B. Schwarz ◽  
Yin Li

AbstractIn the present study, the objective was to evaluate the effects of barley kernel size, grind level, and extract solvent on the antioxidant activities associated with total phenolic content and phenolic acid compositions. Three barley varieties (Kindred, Azure, and Tradition), were used and the results showed that with the exception of superoxide anion radical scavenging activity, thin kernel size fraction (2.0 mm) showed much higher antioxidant activities and total phenolic content than those in the 2.4 mm and 2.8 mm fractions when averaged across barley cultivar, grind level, and extract solvent. A similar trend was found for individual phenolic acid compositions among kernel sizes. Simple correlation analysis revealed that total phenolic content showed strong correlation with DPPH· scavenging activity, ABTS + scavenging activity, and reducing power. Generally, fine grind and 80% acetone extract showed averaged highest values in antioxidant activities, total phenolic content, and individual phenolic acid compositions. Stepwise linear regression showed that extract solvent was the most important factor for DPPH· scavenging activity, ABTS + scavenging activity, reducing power, and iron chelating activity. The sum of syringic acid and caffeic acid exhibited a dominant role in explaining the major variation in antioxidant activities except for superoxide anion radical scavenging activity.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 115-122
Author(s):  
Geyin Zhang ◽  
Yunru Chen ◽  
Kinza Tariq ◽  
Zhaoxia An ◽  
Shuaiyang Wang ◽  
...  

The response surface method was used to study the ultrasonic extraction of traditional Chinese medicine Desmodium triquetrum (L.) DC. phenolic acid. By measuring the total phenolic content, the liquid/solid ratio, ultrasonic power, temperature, time and ethanol solubility were determined to be the significant influencing factors. The total phenolic content reached the highest value (30.3708 mg g–1) under the conditions of the liquid/solid ratio 30%, ultrasonic power 160 w, temperature 40 °C, time 20 min, and ethanol solubility 60%, compared with the traditional boiling method. The total phenolic content was improved, and it was close to the predicted value (29.6548 mg g–1), which proves that the scheme is feasible. After testing, the phenolic acid extracted under these conditions has a good antioxidation effect. The study suggests that ultrasonic extraction methods have the potential to extract antioxidants from traditional Chinese medicines. Also, the influence parameters affecting the process can be further optimized for industrial production.<br /><br />


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1216 ◽  
Author(s):  
Marta Klimek-Szczykutowicz ◽  
Agnieszka Szopa ◽  
Michał Dziurka ◽  
Łukasz Komsta ◽  
Michał Tomczyk ◽  
...  

This paper presents an optimization of conditions for microshoot cultures of Nasturtium officinale R. Br. (watercress). Variants of the Murashige and Skoog (MS) medium containing different plant growth regulators (PGRs): cytokinins—BA (6-benzyladenine), 2iP (6-γ,γ-dimethylallylaminopurine), KIN (kinetin), Zea (zeatin), and auxins—IAA (3-indoleacetic acid), IBA (indole-3-butyric acid), 2,4-d (2,4-dichlorophenoxyacetic acid), IPA (indole-3-pyruvic acid), NAA (naphthalene-1-acetic acid), total 27 MS variants, were tested in agar and agitated cultures. Growth cycles were tested for 10, 20, or 30 days in the agar cultures, and 10 or 20 days in the agitated cultures. Glucosinolate and phenolic acid production, total phenolic content and antioxidant potential were evaluated. The total amounts of glucosinolates ranged from 100.23 to 194.77 mg/100 g dry weight of biomass (DW) in agar cultures, and from 78.09 to 182.80 mg/100 g DW in agitated cultures. The total phenolic acid content varied from 15.89 to 237.52 mg/100 g DW for the agar cultures, and from 70.80 to 236.74 mg/100 g DW for the agitated cultures. Extracts of the cultured biomass contained higher total amounts of phenolic acids, lower total amounts of glucosinolates, a higher total phenolic content and similar antioxidant potentials compared to plant material. The analyses performed confirmed for the first time the explicit influence on secondary metabolite production and on the antioxidant potential. The significance was statistically estimated in a complex manner.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 503C-503
Author(s):  
M.S. Padda ◽  
D.H. Picha

Antioxidant activity and phenolic content in sweetpotato root and leaf tissues were quantified at different developmental stages. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical method was used to measure antioxidant activity and total phenolic content was quantified by spectrophotometry using Folin-Denis reagent. Individual phenolic acids were quantified using reversed phase high performance liquid chromatography. Antioxidant activity and phenolic content decreased with root development and leaf maturity. Roots at the initial stages of development (about 4 g root weight) had a higher antioxidant activity and phenolic content compared to fully developed roots. Phenolic content in fully developed roots was significantly higher in the cortex tissue than internal pith tissue. The highest total phenolic content and antioxidant activity was found in cortex tissue at the initial stage of development (10.3 mg chlorogenic acid eq/g dry tissue weight and 9.7 mg Trolox eq/gdry tissue weight, respectively). Sweetpotato leaves had a significantly higher phenolic content and antioxidant activity than roots. Immature unfolded leaves had the highest total phenolic content (88.5 mg chlorogenic acid eq/g dry tissue weight) and antioxidant activity (99.6 mg Trolox eq/g dry tissue weight). Chlorogenic acid was the major phenolic acid in root and leaf tissues with the exception of young immature leaves in which the predominant phenolic acid was 3,5-dicaffeoylquinic acid.


2007 ◽  
Vol 132 (4) ◽  
pp. 447-451 ◽  
Author(s):  
Malkeet S. Padda ◽  
D.H. Picha

Phenolic acids are considered important antioxidants that may help to prevent many human chronic diseases. The antioxidant activity and phenolic content of sweetpotato [Ipomoea batatas (L.) Lam.] roots and leaves of different sizes and ages, respectively, were quantified. Small roots (≈4 g root weight) had a higher antioxidant activity and phenolic content compared with full-sized marketable roots (≈300 g root weight). Phenolic content in marketable roots was significantly higher in the cortex tissue than in the internal pith tissue. The highest total phenolic content [chlorogenic acid equivalents (10.3 mg·g−1 dry weight)] and antioxidant activity [Trolox equivalents (9.7 mg·g−1 dry weight)] was found in cortex tissue of small-sized roots. Sweetpotato leaves had a significantly higher phenolic content and antioxidant activity than roots. Young, immature unfolded leaves had the highest total phenolic content (88.5 mg·g−1 dry weight) and antioxidant activity (99.6 mg·g−1 dry weight). Chlorogenic acid was the major phenolic acid in root and leaf tissues with the exception of young immature leaves in which the predominant phenolic acid was 3,5-dicaffeoylquinic acid. The results suggest that small-sized roots, which are typically discarded in the field, and young immature leaves may be concentrated sources of phenolic antioxidants.


Sign in / Sign up

Export Citation Format

Share Document