ChemInform Abstract: Mass Spectrometry of Prenylated Flavonoids

ChemInform ◽  
2010 ◽  
Vol 23 (22) ◽  
pp. no-no
Author(s):  
M. TAKAYAMA ◽  
T. FUKAI ◽  
Y. HANO ◽  
T. NOMURA
Heterocycles ◽  
1992 ◽  
Vol 33 (1) ◽  
pp. 405 ◽  
Author(s):  
Taro Nomura ◽  
Mitsuo Takayama ◽  
Toshio Fukai ◽  
Yoshio Hano

1991 ◽  
Vol 5 (2) ◽  
pp. 67-69 ◽  
Author(s):  
Mitsuo Takanyama ◽  
Toshio Fukai ◽  
Koichi Ichikawa ◽  
Taro Nomura

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4591 ◽  
Author(s):  
Jin-Bao Ye ◽  
Gang Ren ◽  
Wen-Yan Li ◽  
Guo-Yue Zhong ◽  
Min Zhang ◽  
...  

In this study, a combination of quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and linear trap quadrupole orbitrap mass spectrometry (LTQ-Orbitrap-MS) was performed to investigate the fragmentation behaviors of prenylated flavonoids (PFs) from Artocarpus plants. Fifteen PFs were selected as the model molecules and divided into five types (groups A–E) according to their structural characteristics in terms of the position and existing form of prenyl substitution in the flavone skeleton. The LTQ-Orbitrap-MSn spectra of the [M − H]− ions for these compounds provided a wealth of structural information on the five different types of compounds. The main fragmentation pathways of group A were the ortho effect and retro Diels–Alder (RDA), and common losses of C4H10, CO, and CO2. The compounds in group B easily lose C6H12, forming a stable structure of a 1,4-dienyl group, unlike those in group A. The fragmentation pathway for group C is characterized by obvious 1,4A−, 1,4B− cracking of the C ring. The diagnostic fragmentation for group D is obvious RDA cracking of the C ring and the successive loss of CH3 and H2O in the LTQ-Orbitrap-MSn spectra. Fragmentation with successive loss of CO or CO2, ·CH3, and CH4 in the LTQ-Orbitrap-MSn spectra formed the characteristics of group E. The summarized fragmentation rules were successfully exploited to identify PFs from Artocarpus heterophyllus, a well-known Artocarpus plant, which led to the identification of a total of 47 PFs in this plant.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Sign in / Sign up

Export Citation Format

Share Document