ChemInform Abstract: Triterpenoids. Part 12. Oxidation Products of Methyl 11-Oxo-18Hα-oleanolate (I) by Sodium Dichromate.

ChemInform ◽  
2010 ◽  
Vol 29 (4) ◽  
pp. no-no
Author(s):  
L. ZAPRUTKO
1971 ◽  
Vol 24 (11) ◽  
pp. 2365 ◽  
Author(s):  
RC Cambie ◽  
KN Joblin ◽  
AF Preston

Some products from the oxidation of manool (3) are examined. Potassium permanganate gives, inter alia, the hitherto unreported compound (16) while sodium dichromate gives the methyl ketone (5) and, as the major product, a mixture of (Z)- and (E)-α,β-unsaturated aldehydes (21). Hypoiodite oxidation of the methyl ketone (5) gives the α-hydroxy acid (26) in addition to the expected acid (6). Products of nucleophilic substitution have also been obtained from the hypoiodite oxidation of the methyl ketones (9) and (37). Peracid oxidation of the methyl ketone (5) gives the epoxy acetate (41) which, on reduction with lithium aluminium hydride, affords the diol (7), from which the odoriferous oxide (30) can be prepared. Oxidations leading to formation of the dione (10) are investigated.


Author(s):  
Vyacheslav I. Chursin ◽  
Alena O. Zaitseva

The conditions for the synthesis of chrome tanning agent during the reduction of sodium dichromate with oligo - and polysaccharides have been investigated. The synthesis of the tanning agent is based on the reduction of hexavalent chromium Cr (VI) in the form of sodium dichromate with reducing agents from the class of vegetable oligo- and polysaccharides with a different sequence of their introduction into the reaction mixture in the presence of sulfuric acid. The introduction of sulfuric acid was carried out gradually to avoid overheating and splashing of the reaction mixture, since the reduction reaction is accompanied by a significant thermal effect. Glucose, maltodextrin and pectin were used as reducing agents. The properties of the obtained products were evaluated by spectrophotometry, conductometry, and analytical methods. It has been shown that the use of native pectin leads to the formation of a gel like mass due to the coordination of the functional groups of galacturonic acid, which is part of the pectin, with chromium atoms. Pretreatment of pectin with a citric acid solution and optimization of synthesis conditions made it possible to obtain a chromium tanning agent that does not contain unreduced chromium. The influence of oligosaccharides on the properties of chromium tanning agents, including their ability to dissolve, is considered. It is shown that the reduction of sodium dichromate with maltodextrin during the reaction results in the formation of incomplete oxidation products of the oligosaccharide, which cause the masking effect of the chromium complex and increase in the resistance of the tanning agent to the action of alkaline reagents used to increase in the basicity during tanning. Experimental samples of chrome tanning agent in dry form were obtained and their leatherprocessing characteristics were studied. The results of technological tests have confirmed the theoretical propositions, according to which the high hydrothermal stability of the leather semifinished product, the almost complete depletion of the processing solution and the required physical and mechanical properties of the finished leather are achieved by introducing the products of incomplete oxidation of oligosaccharides into the inner sphere of the chromium complex.


Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.


1967 ◽  
Vol 17 (01/02) ◽  
pp. 277-286 ◽  
Author(s):  
Maria Gumińska ◽  
M Eckstein ◽  
Barbara Stachurska ◽  
J Sulko

SummaryThe anticoagulant activity of 3.3’-(benzylidene)-bis-4-hydroxycoumarin derivatives has been estimated by one step Quick’s method. The derivatives contained the following groups in the para position of benzylidene residue: NCS- (I), CH3-S- (II), CH3-SO-(III), CH3-S02- (IV), C2H5-S- (V), C2H5-SO- (VI), C2H5-S02- (VII). All these compounds were much more active than 3.3’-(benzylidene)-bis-4-hydroxycoumarin itself.Compounds possessing the ethyl chain at the sulphur atom (V, VI, VII) were more active than methyl homologues (II, III, IV). Comparison of the activity of the series of thio-, sulphoxy-, and sulphonyl-derivatives showed that among methyl- and ethyl-derivatives those with the sulphoxy grouping (III, VI) displayed the greatest anticoagulant activity. The action of sulphonyl (IV, VII) and thio-derivatives (II, V) was weaker and shortest. The derivative with the NCS-group (I) possessed a relatively the lowest activity among the investigated compounds. 3.3’-(p-Ethylsulphoxybenzyl-idene)-bis-4-hydroxycoumarin (VI), with distinct biological activity reached about ½ of dicoumarol activity.


2019 ◽  
Author(s):  
Christopher J. Legacy ◽  
Frederick T. Greenaway ◽  
Marion Emmert

We report detailed mechanistic investigations of an iron-based catalyst system, which allows the α-C-H oxidation of a wide variety of amines, including acyclic tertiary aliphatic amines, to afford dealkylated or amide products. In contrast to other catalysts that affect α-C-H oxidations of tertiary amines, the system under investigation employs exclusively peroxy esters as oxidants. More common oxidants (e.g. tBuOOH) previously reported to affect amine oxidations via free radical pathways do not provide amine α-C-H oxidation products in combination with the herein described catalyst system. Motivated by this difference in reactivity to more common free radical systems, the investigations described herein employ initial rate kinetics, kinetic profiling, Eyring studies, kinetic isotope effect studies, Hammett studies, ligand coordination studies, and EPR studies to shed light on the Fe catalyst system. The obtained data suggest that the catalytic mechanism proceeds through C-H abstraction at a coordinated substrate molecule. This rate-determining step occurs either at an Fe(IV) oxo pathway or a 2-electron pathway at a Fe(II) intermediate with bound oxidant. We further show via kinetic profiling and EPR studies that catalyst activation follows a radical pathway, which is initiated by hydrolysis of PhCO3 tBu to tBuOOH in the reaction mixture. Overall, the obtained mechanistic data support a non-classical, Fe catalyzed pathway that requires substrate binding, thus inducing selectivity for α-C-H functionalization.<br>


2020 ◽  
Vol 57 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Yawei Huang ◽  
Liujun Pei ◽  
Xiaomin Gu ◽  
Jiping Wang

2018 ◽  
Vol 69 (9) ◽  
pp. 2366-2371
Author(s):  
Andrei Cucos ◽  
Petru Budrugeac ◽  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Andreea Voina

Thermal TG/DTG/DTA analysis coupled with FTIR spectroscopy was applied to some sorts of mineral and vegetable oils used in electrical equipment. On heating in inert atmosphere, it was observed that the mineral oils vaporize, while the vegetable oils undergo hydrolysis, yielding fatty acids as main volatiles, as indicated by FTIR. In synthetic air, the FTIR spectra of gaseous products confirm the presence of similar oxidation products, both for mineral and vegetable oils. The TG results indicated that the vegetable-based oils exhibit a substantially higher thermal stability than the mineral oils. The presence or absence of anti-oxidant inhibitors in these oils greatly influences the onset of the oxidation process in air environment factor, as results from the DTA results.


Vsyo o myase ◽  
2020 ◽  
pp. 22-24
Author(s):  
Nasonova V.V. ◽  
◽  
Tunieva E.K. ◽  
Motovilina A.A. ◽  
Mileenkova E.V. ◽  
...  

The paper presents the results of the study on the effect of low-temperature heat treatment on color characteristics and protein oxidation products depending on the method, temperature and duration of heat treatment of culinary products from turkey meat. At present, the use of low-temperature processing in the production technology for meat products with improved organoleptic indices is a topical direction.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 107-114 ◽  
Author(s):  
A. Kornmüller ◽  
U. Wiesmann

The continuous ozonation of polycyclic aromatic hydrocarbons (PAH) was studied in a two stage ozonation system followed by serobic biological degradation. The highly condensed PAH benzo(e)pyrene and benzo(k)fluoranthene were oxidized selectiely in synthetic oil/water-emulsions. The influence of the ozone mass transfer gas-liquid on the reaction rate of benzo(k)fluoranthene was studied for process optimization. The dissolved ozone concentration is influenced by temperature to a higher degree than the reaction rate of PAH. In dependence on pH, PAH oxidation occurs by a direct reaction with ozone inside the oil droplets. Two main ozonation products of benzo(e)pyrene were quantified at different retention times during ozonation and their transformation could be shown in the biological treatment step.


Sign in / Sign up

Export Citation Format

Share Document