ChemInform Abstract: Efficient One-Pot Four-Component Synthesis and X-Ray Crystallographic Structure of 2-Pyridone Derivatives.

ChemInform ◽  
2014 ◽  
Vol 45 (18) ◽  
pp. no-no
Author(s):  
Saeed Balalaie ◽  
Mohammed M. Hashemi ◽  
S. Hadi Khezri ◽  
Frank Rominger ◽  
Elmira Ghabraie ◽  
...  
2013 ◽  
Vol 50 (6) ◽  
pp. 1272-1280 ◽  
Author(s):  
Saeed Balalaie ◽  
Mohammed M. Hashemi ◽  
S. Hadi Khezri ◽  
Frank Rominger ◽  
Elmira Ghabraie ◽  
...  

2016 ◽  
Vol 23 (10) ◽  
pp. 862-866 ◽  
Author(s):  
Mohammed Taha ◽  
Eric Nezerwa ◽  
Hyun-Joo Nam

2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


2021 ◽  
Vol 7 (1) ◽  
pp. 62 ◽  
Author(s):  
Majid Rasool Kamli ◽  
Vartika Srivastava ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Khalid Rehman Hakeem ◽  
...  

Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles’ fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39–0.78 μg/mL and 0.78–1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


2004 ◽  
Vol 82 (10) ◽  
pp. 1452-1461 ◽  
Author(s):  
Pascal Mongrain ◽  
Jasmin Douville ◽  
Jonathan Gagnon ◽  
Marc Drouin ◽  
Andreas Decken ◽  
...  

The strong Lewis acid tungsten oxo complex of calix[4]arene can be obtained in both hydrated and non-hydrated forms. This complex coordinates a water molecule inside the cavity via strong O···W interactions with relatively short distances of 2.284(4) and 2.329(2) Å for the tungsten oxo complex of calix[4]arene··H2O·aniline (1), and the tungsten oxo complex of calix[4]arene·H2O·toluene (2·toluene), respectively. The strong interactions are also deduced by the relatively high H2O elimination temperature observed by TGA and DSC (above 200 °C). The coordinated water molecule inside the calix[4]arene cavity is characterized by a strong IR absorption at 3616 cm–1, and a narrow resonance at ~1.2 ppm (the chemical shifts of the uncoordinated water are 1.55 and 1.60 ppm in C6D6 and CDCl3, respectively). This water molecule gives rise to H-bonds with aniline in 1. The tungsten oxo complex of 5,11,17,23-tetrabromocalix[4]arene (4), also binds H2O as the characteristic signatures are observed. The successful removal of H2O in 2, is performed under mild conditions using bis(tetrahydrofuran)-uranyl nitrate as a competitive Lewis acid. When this reaction is performed in acetonitrile, butyronitrile or tert-butylnitrile, the corresponding tungsten oxo complexes of calix[4]arene·acetonitrile (3), ·butyronitrile (5), and ·tert-butylnitrile (6) are obtained. The use of uranyl as a H2O abstractor is unprecedented. The X-ray structure of 3 consists of a tungsten oxo complex of calix[4]arene coordinated by an acetonitrile molecule (d(W···N = 2.412(2) Å). The tetra-5,11,17,23-choromethyl-25,26,27,28-tetrahydroxycalix[4]arene reacts with M(O)Cl4 (M = Mo, W) in a 1:1 stoichiometry, via a tetra Friedel–Crafts addition of benzene or toluene, followed by a lower-rim complexation of the metal oxide, to form "flower-shaped" calix[4]arenes. This "one pot" double functionalization is unprecedented.Key words: calix[4]arene, tungsten, molybdenum, X-ray, host–guest, Friedel–Crafts, Lewis acid, uranyl, DSC, TGA.


Synthesis ◽  
2021 ◽  
Author(s):  
Muhammad Syafiq Bin Shahari ◽  
Ahmad Junaid ◽  
Edward R. T. Tiekink ◽  
Anton V. Dolzhenko

A new method for the fast synthesis of diverse 4-aryl-6-cycloamino-1,3,5-triazin-2-amines was developed. The synthesis is performed under microwave irradiation in a one-pot manner from cyanoguanidine, aromatic aldehydes, and cyclic amines. Their three-component reaction in the presence of hydrochloric acid produced dihydrotriazines, which were then converted (without isolation) to the targeted compounds via aromatic dehydrogenation in the presence of alkali. The reaction tolerated various aromatic aldehydes (including heterocyclic) and cyclic amines. Crystal structures of two representative 4-aryl-6-morpholino-1,3,5-triazin-2-amines were established by X-ray crystallography. The results of preliminary biological screening identified potent antileukemic activity for 6-(3,4-dihydroisoquinolin-2(1<i>H</i>)-yl)-4-phenyl-1,3,5-triazin-2-amine.


2013 ◽  
Vol 88 ◽  
pp. 107-109 ◽  
Author(s):  
J.J. Nair ◽  
O.Q. Munro ◽  
M. Pošta ◽  
H.B. Papenfus ◽  
P. Beier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document