scholarly journals A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat

ChemSusChem ◽  
2016 ◽  
Vol 9 (8) ◽  
pp. 873-879 ◽  
Author(s):  
Xiuping Zhu ◽  
Mohammad Rahimi ◽  
Christopher A. Gorski ◽  
Bruce Logan
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 441 ◽  
Author(s):  
Xueying Lv ◽  
Yanju Ji ◽  
Huanyu Zhao ◽  
Jiabao Zhang ◽  
Guanyu Zhang ◽  
...  

Vehicles are developing in the direction of energy-saving and electrification. suspension has been widely developed in the field of vehicles as a key component. Traditional hydraulic energy-supply suspensions dissipate vibration energy as waste heat to suppress vibration. This part of the energy is mainly generated by the vehicle engine. In order to effectively utilize the energy of this part, the energy-regenerative suspension with energy recovery converts the vibrational energy into electrical energy as the vehicle’s energy supply equipment. This article reviews the hydraulically powered suspension of vehicles with energy recovery. The importance of such suspension in vehicle energy recovery is analyzed. The main categories of energy-regenerative suspension are illustrated from different energy recovery methods, and the research status of hydraulic energy-regenerative suspension is comprehensively analyzed. Important factors that affect the shock-absorbing and regenerative characteristics of the suspension system are studied. In addition, some unresolved challenges are also proposed, which provides a reference value for the development of energy-regenerative suspension systems for hybrid new energy vehicles


2010 ◽  
Vol 24 (13) ◽  
pp. 1325-1328 ◽  
Author(s):  
YEONG-JEN WU ◽  
WEI-HSIANG LAI

The energy problem is getting increasingly serious. As such, unused energy recovery technology is crucial for environmental protection, which has been investigated extensively. Several methods have been developed to utilize scavenged energy from the environment, such as waste heat, solar energy, wind energy, and tides energy to convert into useful power. There is a new idea of piezoelectric jellyfish generator which combines the utilization of sea wave and vibration energy. When sea wave passes through the jellyfish, the wave causes the tentacles to vibrate. The tentacles is made of piezoelectric polymer which can convert the strain energy into electrical energy. This paper discusses about the piezoelectric jellyfish's tentacles being disturbed by wave in the sea. We employed the commercial CFD software CFD-ACE+ 2006 to simulate this phenomenon. The parameters including its tentacle length (L) and wave propagating function (Y) are studied which affect the piezoelectric jellyfish capacity to generate power.


Author(s):  
Kyoung Joon Kim

A thermoelectric energy recovery module (TERM) is proposed. The TERM seeks to generate electrical energy from waste heat of power amplifier transistors. The TERM consists of a thermoelectric generator (TEG), a heat spreader, and a heat sink. A fully-coupled thermoelectric (TE) model of the TERM is developed to predict the power generation and the thermal performance of the TERM. A first order prototype of the TERM and a measurement setup are constructed to demonstrate the TERM performance. Power generation values and junction temperatures of a heat source are measured at various source heat flows. The measured results are used to verify the predicted results and to demonstrate the TERM performance. Load resistance effects to the TERM performance are also investigated utilizing the TE model and the measurement setup.


2020 ◽  
Vol 68 (2) ◽  
pp. 65-71
Author(s):  
Kazushi Sekine ◽  
Kazunori Takagaki ◽  
Masahiro Miyashita ◽  
Takayuki Morioka

Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4561 ◽  
Author(s):  
Nguyen T. Hung ◽  
Ahmad R. T. Nugraha ◽  
Riichiro Saito

Thermoelectric (TE) material is a class of materials that can convert heat to electrical energy directly in a solid-state-device without any moving parts and that is environmentally friendly. The study and development of TE materials have grown quickly in the past decade. However, their development goes slowly by the lack of cheap TE materials with high Seebeck coefficient and good electrical conductivity. Carbon nanotubes (CNTs) are particularly attractive as TE materials because of at least three reasons: (1) CNTs possess various band gaps depending on their structure, (2) CNTs represent unique one-dimensional carbon materials which naturally satisfies the conditions of quantum confinement effect to enhance the TE efficiency and (3) CNTs provide us with a platform for developing lightweight and flexible TE devices due to their mechanical properties. The TE power factor is reported to reach 700–1000 W / m K 2 for both p-type and n-type CNTs when purified to contain only doped semiconducting CNT species. Therefore, CNTs are promising for a variety of TE applications in which the heat source is unlimited, such as waste heat or solar heat although their figure of merit Z T is still modest (0.05 at 300 K). In this paper, we review in detail from the basic concept of TE field to the fundamental TE properties of CNTs, as well as their applications. Furthermore, the strategies are discussed to improve the TE properties of CNTs. Finally, we give our perspectives on the tremendous potential of CNTs-based TE materials and composites.


2012 ◽  
Vol 476-478 ◽  
pp. 1336-1340
Author(s):  
Kai Feng Li ◽  
Rong Liu ◽  
Lin Xiang Wang

The concept of energy harvesting works towards developing self-powered devices that do not require replaceable power supplies. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with ferroelectric materials. Ferroelectric materials have a crystalline structure that provide a unique ability to convert an applied electrical potential into a mechanical strain or vice versa. Based on the properties of the material, this paper investigates the technique of power harvesting and storage.


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2021 ◽  
pp. 11-23
Author(s):  
Om Prakash ◽  
Ishan Kashyap ◽  
Ayush Kumar ◽  
Bharath Bhushan ◽  
Anil Kumar ◽  
...  

In today's world, energy-saving and waste energy recovery are an important aspect, and it is more critical in the automotive sector. This is mainly due to vehicles are running on fossil fuel. This paper presents review on state of art waste energy recovery systems for automobiles. With further development, this system has the potential in deployment in many other industries. This technology can also be used to store electrical energy which will further be helpful in both hybrid and electric vehicles.


2017 ◽  
Vol 77 (2) ◽  
pp. 364-374 ◽  
Author(s):  
Azize Ayol ◽  
Ozgun Tezer ◽  
Alim Gurgen

Abstract Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH4, H2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals – ash, glassy material – were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.


Sign in / Sign up

Export Citation Format

Share Document