Characterization of railway line impedance based only on short-circuit measurements

2014 ◽  
Vol 43 (8) ◽  
pp. 984-994
Author(s):  
J. C. García ◽  
J. A. Jiménez ◽  
F. Espinosa ◽  
A. Hernández ◽  
I. Fernández ◽  
...  
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1971
Author(s):  
Lihua Ye ◽  
Muhammad Muzamal Ashfaq ◽  
Aiping Shi ◽  
Syyed Adnan Raheel Shah ◽  
Yefan Shi

In this research, the aim relates to the material characterization of high-energy lithium-ion pouch cells. The development of appropriate model cell behavior is intended to simulate two scenarios: the first is mechanical deformation during a crash and the second is an internal short circuit in lithium-ion cells during the actual effect scenarios. The punch test has been used as a benchmark to analyze the effects of different state of charge conditions on high-energy lithium-ion battery cells. This article explores the impact of three separate factors on the outcomes of mechanical punch indentation experiments. The first parameter analyzed was the degree of prediction brought about by experiments on high-energy cells with two different states of charge (greater and lesser), with four different sizes of indentation punch, from the cell’s reaction during the indentation effects on electrolyte. Second, the results of the loading position, middle versus side, are measured at quasi-static speeds. The third parameter was the effect on an electrolyte with a different state of charge. The repeatability of the experiments on punch loading was the last test function analyzed. The test results of a greater than 10% state of charge and less than 10% state of charge were compared to further refine and validate this modeling method. The different loading scenarios analyzed in this study also showed great predictability in the load-displacement reaction and the onset short circuit. A theoretical model of the cell was modified for use in comprehensive mechanical deformation. The overall conclusion found that the loading initiating the cell’s electrical short circuit is not instantaneously instigated and it is subsequently used to process the development of a precise and practical computational model that will reduce the chances of the internal short course during the crash.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3779 ◽  
Author(s):  
Jaramillo Serna ◽  
López-Lezama

When addressing the problem of calculating the settings for directional overcurrent elements, the focus is usually the determination of the pickup, time dial and operating characteristic, in order to ensure proper selectivity with adjacent protection elements, thus limiting the problem related to the settings calculation of the direction determination characteristic to the application of typical settings and general guidelines, which cannot provide a reliable measure of the suitability of such settings. The present article describes in detail an alternative methodology for determining these settings, based on a characterization of the power system where the directional protection is to be applied, through the performance of a detailed short-circuit sensitivity analysis. From this, an optimization problem is formulated and solved to obtain the main settings shaping the direction determination characteristic, and then, a series of variables are used to measure the performance of the obtained settings, and even to improve it. The obtained results show the advantages of the application of the proposed methodology over the traditional methodology, based on typical settings and general guidelines, pointing out the risks of using the later.


1980 ◽  
Vol 239 (3) ◽  
pp. F299-F306 ◽  
Author(s):  
C. S. Park ◽  
D. D. Fanestil

This study sought to elucidate the molecular mechanism involved in the Na+ entry across the apical membrane of the urinary bladder of the toad. Na+ transport, as measured by short-circuit current (SCC), was irreversibly inhibited by three tyrosine-specific reagents: N-acetylimidazole (ID50, 4.6 x 10(-2)M), tetranitromethane (1.8 x 10(-4) M), and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl; 3.4 x 10(-5) M). The functional specificity of NBD-Cl to block Na+ entry via Na+ channels was attested by the following: 1) NBD-Cl produced comparable inhibition of SCC and Na+ influx under aerobic and anaerobic conditions; 2) amphotericin B produced complete recovery of inhibited SCC; 3) vasopressin increased SCC only in proportion to the uninhibited SCC; 4) Km for Na+ was not changed; and 5) the half time for the inhibition varied as a function of amiloride concentration or pharmacologic activity of its analogues. On the basis of the above findings, these tyrosine-specific reagents are believed to be useful chemical probes for the identification and characterization of Na+ channel protein.


2018 ◽  
Vol 924 ◽  
pp. 697-702 ◽  
Author(s):  
Sauvik Chowdhury ◽  
Levi Gant ◽  
Blake Powell ◽  
Kasturirangan Rangaswamy ◽  
Kevin Matocha

This paper presents the performance, reliability and ruggedness characterization of 1200V, 80mΩ rated SiC planar gate MOSFETs, fabricated in a high volume, 150mm silicon CMOS foundry. The devices showed a specific on-resistance of 5.1 mΩ.cm2 at room temperature, increasing to 7.5 mΩ.cm2 at 175 °C. Total switching losses were less than 300μJ (VDD = 800V, ID = 20A). The devices showed excellent gate oxide reliability with VTH shifts under 0.2V for extended HTGB stress testing at 175 °C for up to 5500 hours (VGS = 25V) and 2500 hours (VGS = -10V). Ruggedness performance such as unclamped inductive load switching and short circuit capability are also discussed.


2017 ◽  
Vol 34 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Mubeen Zafar ◽  
Muhammad Naeem Awais ◽  
Muhammad Asif ◽  
Amir Razaq ◽  
Gul Amin

Purpose The purpose of this research work is to harvest energy using the piezoelectric properties of ZnO nanowires (NW). Fabrication and characterization of the piezoelectric nanogenerator (NG), based on Al/ZnO/Au structure without using hosting layer, were done to harvest energy. The proposed method has full potential to harvest the cost-effective energy. Design/methodology/approach ZnO NW were fabricated between the thin layers of Al- and Au-coated substrates for the development of piezoelectric NG. To grow ZnO NW, ZnO seed layer was prepared on the Al-coated substrate, and then ZnO NW were grown by aqueous chemical growth method. Finally, Au top electrode was used to conclude the Al/ZnO/Au NG structure. The Al and Au electrodes were used to establish the ohmic and Schottky contacts with ZnO NW, respectively. Findings Surface morphology of the fabricated device was done by using scanning electron microscopy, and electrical characterization of the sample was performed with digital oscilloscope, picoammeter and voltmeter. The energy harvesting experiment was performed to excite the presented device. The fabricated piezoelectric-sensitive device revealed the maximum open circuit voltage up to 5 V and maximum short circuit current up to 30 nA, with a maximum power of 150 nW. Consequently, it was also shown that the output of the fabricated device was increased by applying the stress. The presented work will help for the openings to capture the mechanical energy from the surroundings to power up the nano/micro-devices. This research work shows that NGs have the competency to build the self-powered nanosystems. It has potential applications in biosensing and personal electronics. Originality/value The fabrication of simple and cost-effective piezoelectric NG is done with a structure of Al/ZnO/Au without using hosting layer. The presented method elucidates an efficient and cost-effective approach to harvest the mechanical energy from the native environment.


Author(s):  
Muneer H. Jadduaa ◽  
Nadir Fadhil Habubi ◽  
Alaa Z. Ckal

—In this study, (CdO) thin film, which was prepared by chemical method and deposited by drop casting technique on glass and silicon substrates have been studied . The structural, optical and chemical analysis were investigated. X-ray diffraction (XRD) measurements reveal that the (CdO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements assure that the energy gap of (CdO) thin film was found to be 2.5eV. I-V characterization of the solar cell under illumination at 40mW/cm2 fluence was investigated . The open circuit voltage (Voc) was 4.1V and short-circuit current density (Isc) was 1.44 mA. These measurements show that the fill factor (FF) and the conversion efficiency (η) ,were 36.2% and 6.8% respectively.


2020 ◽  
Vol 1004 ◽  
pp. 933-938
Author(s):  
Vinoth Sundaramoorthy ◽  
Lukas Kranz ◽  
Stephan Wirths ◽  
Marco Bellini ◽  
Gianpaolo Romano ◽  
...  

Silicon Carbide JFETs with low on-state resistance are suitable for a number of high power applications. The static, dynamic and short circuit characterization of 600 V SiC Trench JFETs are reported in this paper. Typical JFETs fabricated with a 1.2 μm cell pitch had an on-resistance value around 40 mΩ and blocking voltages of ~600 V across the wafer. JFETs were successfully switched with a dc link voltage of 300 V, a current of 15 A and operating temperature of 125 °C. These JFETs were subjected to a short circuit condition with duration ranging from 10 μs to 45 μs at a dc link voltage of ~300 V, and operating temperatures of 25 °C and 125 °C. The device could withstand subsequent short circuit successfully without any failure at both 25 °C and 125 °C. The short circuit current showed consistent dependency on the applied gate voltage, when it was varied from 0 V to 15 V.


1994 ◽  
Vol 266 (2) ◽  
pp. F342-F348 ◽  
Author(s):  
T. Kita ◽  
C. E. Smith ◽  
K. F. Fok ◽  
K. L. Duffin ◽  
W. M. Moore ◽  
...  

Guanylin, a peptide homologue of the bacterial heat-stable enterotoxins (ST), is an endogenous activator of guanylate cyclase C (GC-C). We have initiated a search for other members of the guanylin peptide family and in the current study describe a "guanylin-like peptide" from human urine. Bioactivity was monitored by determining the effect of urine extracts on T84 cell guanosine 3',5'-cyclic monophosphate (cGMP) levels. Purification yielded two bioactive peaks of peptides that, when sequenced by NH2-terminal analysis, possessed 15 and 16 amino acids. The sequence of the smaller peptide represented an NH2-terminal truncation of the larger peptide. We have termed the larger peptide human uroguanylin; it has the following amino acid sequence: NDDCELCVNVACTGCL. Human uroguanylin shares amino acid sequence homology with guanylin and ST. Synthetic uroguanylin increased cGMP levels in T84 cells, competed with 125I-labeled ST for receptors, and stimulated Cl- secretion as reflected by an increased short-circuit current. Thus we report the isolation from human urine of a unique peptide, uroguanylin, that behaves in a manner similar to guanylin and appears to be a new member of this peptide family.


Sign in / Sign up

Export Citation Format

Share Document