scholarly journals Don’t stand so close to me: Microbiota‐facilitated enemy release dynamics in introduced Onthophagus taurus dung beetles

2020 ◽  
Vol 10 (24) ◽  
pp. 13640-13648
Author(s):  
Erik S. Parker ◽  
Armin P. Moczek
2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Fallon Fowler ◽  
Tashiana Wilcox ◽  
Stephanie Orr ◽  
Wes Watson

Abstract Understanding collection methodologies and their limitations are essential when targeting specific arthropods for use in habitat restoration, conservation, laboratory colony formation, or when holistically representing local populations using ecological surveys. For dung beetles, the most popular collection methodology is baited traps, followed by light traps and unbaited flight-intercept traps during diversity surveys. A less common collection method, flotation, is assumed to be laborious and messy, and so only a handful of papers exist on its refinement and strengths. Our purpose was threefold: First, we tested the recovery and survival rates of Labarrus (=Aphodius) pseudolividus (Balthasar) and Onthophagus taurus (Schreber) when floating beetle-seeded dung pats to determine potential collection and safety issues. We collected 72.4 and 78% of the seeded L. pseudolividus and O. taurus, respectively, with >95% survival rating. Second, we developed a flotation-sieving technique that enables users to rapidly collect and passively sort dung beetles with less time and effort. Specifically, we often collected 50–100 g of wild dung beetles within a couple of hours of gathering dung and sorted them in a couple more by allowing dung beetles to sort themselves by size within a series of sieves; Third, we reviewed flotation-based advantages and disadvantages in comparison to other methodologies.


2020 ◽  
Vol 49 (5) ◽  
pp. 1105-1116
Author(s):  
Fallon Fowler ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

Abstract Research suggests dung beetles can churn, aerate, and desiccate dung in ways that influence the dung and soil microbes producing greenhouse gases (GHGs). We examined the impacts of the tunneling beetle, Onthophagus taurus (Schreber), and the dwelling beetle, Labarrus pseudolividus (Balthasar), on the carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emitted from pasture-laid bovine dung as well as their sum-total (CO2 + CH4 + N2O) effect on global warming, or their carbon dioxide equivalent (CO2e). Despite dung beetles potential effects on CH4 and N2O, the existing literature shows no ultimate CO2e reductions. We hypothesized that more dung beetles would degrade pats faster and reduce CO2e, and so we increased the average dung beetle biomass per dung volume 6.22× above previously published records, and visually documented any dung damage. However, the time effects were 2–5× greater for any GHG and CO2e (E = 0.27–0.77) than dung beetle effects alone (E = 0.09–0.24). This suggests that dung beetle communities cannot adequately reduce GHGs unless they can accelerate dung decomposition faster than time alone.


1999 ◽  
Vol 89 (2) ◽  
pp. 119-123 ◽  
Author(s):  
I.R. Dadour ◽  
D.F. Cook ◽  
C. Neesam

AbstractFifty-five species of exotic dung beetles have been introduced into Australia and in many areas, several species are now established and often abundant. Controversy exists in the dung beetle literature concerning the use of ivermectin as an anthelmintic treatment for livestock and its subsequent lethal and sub-lethal effects on adult dung beetles. A study was conducted in the field exposing replicate dung pats containing residues of ivermectin excreted 0–15 days post-injection. At the time of the study, the introduced species of dung beetle Onthophagus taurus (Schreber) was present in high numbers (>1000 beetles per pat). After 24 h exposure, dung pats collected from cattle treated 7 and 10 days earlier with ivermectin were dispersed significantly less than untreated dung. A similar pattern was evident in the numbers of dung beetles present in each pat. This study is discussed in the context of anthelmintic usage in cattle and their potential ecotoxic effects against dung beetles.


1996 ◽  
Vol 86 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Marina Tyndale-Biscoe ◽  
W.G. Vogt

AbstractWe compare the pest status and age structure of bush fly,Musca vetustissima Walker, populations, and the abundance of native dung beetles at Uriarra, ACT, for five fly seasons before (1976–81) and three seasons after (1990–93) the exotic dung beetles Euoniticellus fulvus (Goeze) and Onthophagus taurus (Schreber) became established in the area during the late 1980s. Fly populations in all post-introduction seasons of 1990–93 were much older than in the pre-introduction seasons, indicating reduced levels of local fly breeding and higher proportions of immigrants. During the pre-introduction period, the fly annoyance index exceeded the ‘minimum discomfort’ threshold of 10.0 in parts of all seasons. The mean index was 11.3, and this did not differ significantly between seasons. The total dry weight of dung beetles at the time of the first influx of bush flies each year was consistently below 3 g/dung pad which was apparently too low to depress bush fly breeding below their replacement level of 3%. The mean annoyance index of 3.1 for the 1990–91 season was significantly lower than for the pre-introduction period and the total dry weight of beetles during November-December exceeded 3 g/dung pad on all sampling occasions. In the 1991–92 and 1992–93 seasons fly annoyance indices reverted to pre-introduction levels (seasonal means of 13.7 and 7.8 respectively) and total dry weight of beetles was again below 3 g/dung pad when the bush flies first appeared. Survival of immature bush flies in local dung pads remained below the replacement level of 3% during 1990–91, but exceeded 3% on two occasions during 1991–92. Apart from 1976–77, when mean catches of native dung beetles (O. australis and O. granulatus) were exceptionally high, mean catches of native dung beetles during pre- and post-introduction years were very similar, but the mean dung beetle biomass increased following the establishment of exotic species.


2020 ◽  
Vol 223 (20) ◽  
pp. jeb227884 ◽  
Author(s):  
Amanda W. Carter ◽  
Kimberly S. Sheldon

ABSTRACTAdaptive thermal plasticity allows organisms to adjust their physiology to cope with fluctuating environments. However, thermal plasticity is rarely studied in response to thermal variability and is often measured in a single life stage. Plasticity in response to thermal variability likely differs from responses to constant temperature or acute stress. In addition, life stages likely differ in their plasticity, and responses in one stage may be affected by the experiences in a previous stage. Increasing the resolution with which we understand thermal plasticity in response to thermal variation across ontogeny is crucial to understanding how organisms cope with the thermal variation in their environment and to estimating the capacity of plasticity to mitigate costs of rapid environmental change. We wanted to know whether life stages differ in their capacity for thermal plasticity under temperature fluctuations. We reared Onthophagus taurus dung beetles in either low or high temperature fluctuation treatments and quantified thermal plasticity of metabolism of pupae and adults. We found that adults were thermally plastic and pupae were not. Next, we tested whether the plasticity observed in the adult life stage was affected by the thermal conditions during development. We again used low and high temperature fluctuation treatments and reared individuals in one condition through all egg to pupal stages. At eclosion, we switched half of the individuals in each treatment to the opposite fluctuation condition and, later, measured thermal plasticity of metabolism in adults. We found that temperature conditions experienced during the adult stage, but not egg to pupal stages, affect adult thermal plasticity. However, temperature fluctuations during development affect adult body size, suggesting that some aspects of the adult phenotype are decoupled from previous life stages and others are not. Our data demonstrate that life stages mount different responses to temperature variability and uniquely contribute to the adult phenotype. These findings emphasize the need to broadly integrate the life cycle into studies of phenotypic plasticity and physiology; doing so should enhance our ability to predict organismal responses to rapid global change and inform conservation efforts.


2014 ◽  
Vol 147 (5) ◽  
pp. 617-627 ◽  
Author(s):  
K.D. Floate ◽  
D.W. Watson ◽  
P. Coghlin ◽  
O. Olfert

AbstractThree studies were performed to assess the likelihood of establishing the dung beetle Onthophagus taurus (Schreber) (Coleoptera: Scarabaeidae) in southern Alberta, Canada. This European species was first reported in Florida in the 1970s and now occurs as far north as Michigan, United States of America. Its ability to establish in Canada is unknown, but is desired to accelerate the degradation of cattle dung on pastures. The first study examined egg-to-adult development at temperatures of 10–32 °C (in increments of 2 °C) to develop degree-day models for O. taurus and for two other closely related species of dung beetles. Onthophagus nuchicornis (Linnaeus), used as a positive control, is a European species common across Canada. Digitonthophagus gazella (Fabricius), used as a negative control, is an Afro-Asian species whose distribution is restricted in North America to the southern United States of America. The second study examined the overwintering ability of O. taurus and D. gazella in outdoor field cages. The third study compared climate parameters between southern Alberta and the northernmost recorded distribution of O. taurus. Results combined across the three studies show that O. taurus can complete egg-to-adult development and overwinter in southern Alberta. However, high overwintering mortality is predicted to prevent establishment of O. taurus in the region.


2017 ◽  
Vol 149 (4) ◽  
pp. 504-524 ◽  
Author(s):  
K.D. Floate ◽  
D.W. Watson ◽  
R.M. Weiss ◽  
O. Olfert

AbstractOnthophagus nuchicornis(Linnaeus),Onthophagus taurus(Schreber), andDigitonthophagus gazella(Fabricius) (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini) are species of dung beetles that have been used in relocation programmes to accelerate the degradation of cattle dung on pastures. Exotic in North America, all three species have expanded their distributions since their introduction onto the continent. Here we report development of CLIMEX®bioclimatic models using data collected before 2011 that predict the eventual North American distributions of these species. Data collected after 2010 is used to validate these models. Model outputs identify large regions of the central United States of America suitable for establishment ofO. nuchicornisandO. tauruswhere these species have not been reported. These results indicate that the latter two species may already be present in these regions and undetected, that they have yet to expand into these regions, and (or) that factors restricting migration or dispersal prevent these species from occupying these areas. Model outputs forD. gazellasuggest that the species has largely reached its predicted maximum distribution. These models can be used to aid the success of future relocation programmes elsewhere in the world and (or) to predict regions where these species are likely to spread without human intervention.


Ecography ◽  
2001 ◽  
Vol 24 (5) ◽  
pp. 511-524 ◽  
Author(s):  
Tomas Roslin

Sign in / Sign up

Export Citation Format

Share Document