scholarly journals Environmental gradients influence biogeographic patterns of nonconsumptive predator effects on oysters

Ecosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
Author(s):  
David L. Kimbro ◽  
Avery E. Scherer ◽  
James E. Byers ◽  
Jonathan H. Grabowski ◽  
A. Randall Hughes ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian M. Ibáñez ◽  
Melany Waldisperg ◽  
Felipe I. Torres ◽  
Sergio A. Carrasco ◽  
Javier Sellanes ◽  
...  

Abstract Intertidal communities’ composition and diversity usually exhibit strong changes in relation to environmental gradients at different biogeographical scales. This study represents the first comprehensive diversity and composition description of polyplacophoran assemblages along the Peruvian Province (SE Pacific, 12°S–39°S), as a model system for ecological latitudinal gradients. A total of 4,775 chitons from 21 species were collected on twelve localities along the Peruvian Province. This sampling allowed us to quantitatively estimate the relative abundance of the species in this assemblage, and to test whether chitons conform to elementary predictions of major biogeographic patterns such as a latitudinal diversity gradient. We found that the species composition supported the division of the province into three ecoregional faunal groups (i.e. Humboldtian, Central Chile, and Araucanian). Though chiton diversity did not follow a clear latitudinal gradient, changes in species composition were dominated by smaller scale variability in salinity and temperature. Body size significantly differed by ecoregions and species, indicating latitudinal size-structure assamblages. In some localities body size ratios differed from a random assemblage, evidencing competition at local scale. Changes in composition between ecoregions influence body size structure, and their overlapping produce vertical size segregation, suggesting that competition coupled with environmental conditions structure these assemblages.


2015 ◽  
Vol 39 (3) ◽  
pp. 310-336 ◽  
Author(s):  
Bradley S. Case ◽  
Roddy J. Hale

Alpine treeline ecotones display spatial variability in a range of features that often reflect underlying abiotic variation and its control on the processes that form and maintain treelines. In this study, we explore treeline pattern–environment relationships for continuous, abrupt Nothofagus treelines in New Zealand across a seven degree latitudinal gradient (circa 39–46° S). Our main aims were: 1) to develop a set of metrics for characterising spatial variation in abrupt treelines at a landscape scale; 2) to relate these metrics to underlying abiotic variation in order to determine the relative roles of climate, substrate, topography and disturbance in structuring Nothofagus treeline patterns; and 3) to develop a possible biogeographic typology of Nothofagus treelines. A GIS-based approach was used to develop seven metrics describing different facets of landscape-scale treeline pattern. Regression modelling and variance partitioning were used to explore relationships among treeline pattern metrics and abiotic variation. Cluster analysis was used to characterise emergent treeline types and GIS was used to map their biogeographic distributions. The individual treeline metrics characterised unique patterns of treeline variation across New Zealand and, upon clustering, resulted in seven distinctive treeline types. Nothofagus treeline patterns in New Zealand are strongly structured by environmental gradients, with about half the landscape-scale variation in treelines being structured by patterns of abiotic variation. Gradients of climatic and disturbance were most influential in explaining landscape-scale variation of individual treeline metrics and of multivariate treeline patterns. The presented, metric-based approach offers a means to develop a comprehensive picture of continuous, landscape-scale treeline variation, bridging an existing research gap between studies at site and global scales. Our approach can enable the development biogeographic treeline typologies that could facilitate the comparison of treeline patterns across large areas and provide a basis for the generation of new hypotheses regarding treeline formation and dynamics.


2019 ◽  
Author(s):  
Michael Brian James Harfoot ◽  
Andrew Abraham ◽  
Derek P Tittensor ◽  
Gabriel C Costa ◽  
Søren Faurby ◽  
...  

ABSTRACTMany mechanisms have been hypothesized to explain Bergmann’s rule - the correlation of body size with latitude. However, it is not feasible to assess the contribution of hypothesised mechanisms by experimental manipulation or statistical correlation. Here, we evaluate two of the principal hypothesised mechanisms, related to thermoregulation and resource availability, using structured experiments in a mechanistic global ecosystem model. We simulated the broad structure of assemblages and ecosystems using the Madingley model, a mechanistic General Ecosystem Model (GEM). We compared emergent modelled biogeographic patterns in body mass to empirical patterns for mammals and birds. We then explored the relative contribution of thermoregulation and resource availability to body mass clines by manipulating the model’s environmental gradients. Madingley produces body size gradients that are in broad agreement with empirical estimates. Thermoregulation and resource availability were both important controls on body mass for endotherms, but only temperature for ectotherms. Our results suggest that seasonality explains animal body mass patterns through a complex set of mechanisms. Process-based GEMs generate broadly realistic biogeographic body mass patterns. Ecologists can use them in novel ways: to explore causality, or for generating and testing hypotheses for large-scale, emergent ecological patterns. At the same time, macroecological patterns are useful for evaluating mechanistic models. Iteratively developing GEMs, and evaluating them against macroecological patterns, could generate new insights into the complex causes of such patterns.


mSystems ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Naseer Sangwan ◽  
Iratxe Zarraonaindia ◽  
Jarrad T. Hampton-Marcell ◽  
Herbert Ssegane ◽  
Tifani W. Eshoo ◽  
...  

ABSTRACT Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients. The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients.


2015 ◽  
Vol 537 ◽  
pp. 49-58 ◽  
Author(s):  
A Davidson ◽  
JN Griffin ◽  
C Angelini ◽  
F Coleman ◽  
RL Atkins ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


2005 ◽  
Vol 31 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Fawzy M. Salama ◽  
Monier Abd El-Ghani ◽  
Salah El Naggar ◽  
Khadija A. Baayo

Sign in / Sign up

Export Citation Format

Share Document