scholarly journals Differential Functional Constraints Cause Strain-Level Endemism in Polynucleobacter Populations

mSystems ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Naseer Sangwan ◽  
Iratxe Zarraonaindia ◽  
Jarrad T. Hampton-Marcell ◽  
Herbert Ssegane ◽  
Tifani W. Eshoo ◽  
...  

ABSTRACT Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients. The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients.

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Xuhua Xia

Abstract The optimization of the translational machinery in cells requires the mutual adaptation of codon usage and tRNA concentration, and the adaptation of tRNA concentration to amino acid usage. Two predictions were derived based on a simple deterministic model of translation which assumes that elongation of the peptide chain is rate-limiting. The highest translational efficiency is achieved when the codon recognized by the most abundant tRNA reaches the maximum frequency. For each codon family, the tRNA concentration is optimally adapted to codon usage when the concentration of different tRNA species matches the square-root of the frequency of their corresponding synonymous codons. When tRNA concentration and codon usage are well adapted to each other, the optimal content of all tRNA species carrying the same amino acid should match the square-root of the frequency of the amino acid. These predictions are examined against empirical data from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae.


2018 ◽  
Vol 115 (21) ◽  
pp. E4940-E4949 ◽  
Author(s):  
Idan Frumkin ◽  
Marc J. Lajoie ◽  
Christopher J. Gregg ◽  
Gil Hornung ◽  
George M. Church ◽  
...  

Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed “codon usage bias.” Previous studies have demonstrated that synonymous changes in a coding sequence can exert significantciseffects on the gene’s expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes inEscherichia coli. This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation.


2014 ◽  
Vol 80 (23) ◽  
pp. 7186-7195 ◽  
Author(s):  
Colin R. Jackson ◽  
Justin J. Millar ◽  
Jason T. Payne ◽  
Clifford A. Ochs

ABSTRACTThe different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria,Cyanobacteria, andPlanctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated withCyanobacteriawere removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in theSynechococcus/Prochlorococcus/Cyanobium(Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-likeAlphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages.


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Frida Belinky ◽  
Itamar Sela ◽  
Igor B. Rogozin ◽  
Eugene V. Koonin

Abstract Background Single nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases potentially could alleviate the deleterious effect of single substitutions, making them subject to positive selection. To elucidate the effects of selection on double substitutions in all codons, it is critical to differentiate selection from mutational biases. Results We addressed the evolutionary regimes of within-codon double substitutions in 37 groups of closely related prokaryotic genomes from diverse phyla by comparing the fractions of double substitutions within codons to those of the equivalent double S substitutions in adjacent codons. Under the assumption that substitutions occur one at a time, all within-codon double substitutions can be represented as “ancestral-intermediate-final” sequences (where “intermediate” refers to the first single substitution and “final” refers to the second substitution) and can be partitioned into four classes: (1) SS, S intermediate–S final; (2) SN, S intermediate–N final; (3) NS, N intermediate–S final; and (4) NN, N intermediate–N final. We found that the selective pressure on the second substitution markedly differs among these classes of double substitutions. Analogous to single S (synonymous) substitutions, SS double substitutions evolve neutrally, whereas analogous to single N (non-synonymous) substitutions, SN double substitutions are subject to purifying selection. In contrast, NS show positive selection on the second step because the original amino acid is recovered. The NN double substitutions are heterogeneous and can be subject to either purifying or positive selection, or evolve neutrally, depending on the amino acid similarity between the final or intermediate and the ancestral states. Conclusions The results of the present, comprehensive analysis of the evolutionary landscape of within-codon double substitutions reaffirm the largely conservative regime of protein evolution. However, the second step of a double substitution can be subject to positive selection when the first step is deleterious. Such positive selection can result in frequent crossing of valleys on the fitness landscape.


Paleobiology ◽  
2020 ◽  
pp. 1-22 ◽  
Author(s):  
James C. Lamsdell

Abstract The occupation of new environments by evolutionary lineages is frequently associated with morphological changes. This covariation of ecotype and phenotype is expected due to the process of natural selection, whereby environmental pressures lead to the proliferation of morphological variants that are a better fit for the prevailing abiotic conditions. One primary mechanism by which phenotypic variants are known to arise is through changes in the timing or duration of organismal development resulting in alterations to adult morphology, a process known as heterochrony. While numerous studies have demonstrated heterochronic trends in association with environmental gradients, few have done so within a phylogenetic context. Understanding species interrelationships is necessary to determine whether morphological change is due to heterochronic processes; however, research is hampered by the lack of a quantitative metric with which to assess the degree of heterochronic traits expressed within and among species. Here I present a new metric for quantifying heterochronic change, expressed as a heterochronic weighting, and apply it to xiphosuran chelicerates within a phylogenetic context to reveal concerted independent heterochronic trends. These trends correlate with shifts in environmental occupation from marine to nonmarine habitats, resulting in a macroevolutionary ratchet. Critically, the distribution of heterochronic weightings among species shows evidence of being influenced by both historical, phylogenetic processes and external ecological pressures. Heterochronic weighting proves to be an effective method to quantify heterochronic trends within a phylogenetic framework and is readily applicable to any group of organisms that have well-defined morphological characteristics, ontogenetic information, and resolved internal relationships.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Marli Vlok ◽  
Andrew S. Lang ◽  
Curtis A. Suttle

ABSTRACTRNA viruses, particularly genetically diverse members of thePicornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, andHeterosigma akashiwoRNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans.IMPORTANCEVery little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, theMarnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian M. Ibáñez ◽  
Melany Waldisperg ◽  
Felipe I. Torres ◽  
Sergio A. Carrasco ◽  
Javier Sellanes ◽  
...  

Abstract Intertidal communities’ composition and diversity usually exhibit strong changes in relation to environmental gradients at different biogeographical scales. This study represents the first comprehensive diversity and composition description of polyplacophoran assemblages along the Peruvian Province (SE Pacific, 12°S–39°S), as a model system for ecological latitudinal gradients. A total of 4,775 chitons from 21 species were collected on twelve localities along the Peruvian Province. This sampling allowed us to quantitatively estimate the relative abundance of the species in this assemblage, and to test whether chitons conform to elementary predictions of major biogeographic patterns such as a latitudinal diversity gradient. We found that the species composition supported the division of the province into three ecoregional faunal groups (i.e. Humboldtian, Central Chile, and Araucanian). Though chiton diversity did not follow a clear latitudinal gradient, changes in species composition were dominated by smaller scale variability in salinity and temperature. Body size significantly differed by ecoregions and species, indicating latitudinal size-structure assamblages. In some localities body size ratios differed from a random assemblage, evidencing competition at local scale. Changes in composition between ecoregions influence body size structure, and their overlapping produce vertical size segregation, suggesting that competition coupled with environmental conditions structure these assemblages.


Sign in / Sign up

Export Citation Format

Share Document