scholarly journals Validation of U.S. mortality prediction models for hospitalized heart failure in the United Kingdom and Japan

2018 ◽  
Vol 20 (8) ◽  
pp. 1179-1190 ◽  
Author(s):  
Toshiyuki Nagai ◽  
Varun Sundaram ◽  
Ahmad Shoaib ◽  
Yasuyuki Shiraishi ◽  
Shun Kohsaka ◽  
...  
Author(s):  
Tara Lagu ◽  
Mihaela Stefan ◽  
Quinn Pack ◽  
Auras Atreya ◽  
Mohammad A Kashef ◽  
...  

Background: Mortality prediction models, developed with the goal of improving risk stratification in hospitalized heart failure (HF) patients, show good performance characteristics in the datasets in which they were developed but have not been validated in external populations. Methods: We used a novel multi-hospital dataset [HealthFacts (Cerner Corp)] derived from the electronic health record (years 2010-2012). We examined the performance of four published HF inpatient mortality prediction models developed using data from: the Acute Decompensated Heart Failure National Registry (ADHERE), the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) study, and the Get With the Guidelines-Heart Failure (GWTG-HF) registry. We compared to an administrative HF mortality prediction model (Premier model) that includes selected patient demographics, comorbidities, prior heart failure admissions, and therapies administered (e.g., inotropes, mechanical ventilation) in the first 2 hospital days. We also compared to a model that uses clinical data but is not heart failure-specific: the Laboratory-Based Acute Physiology Score (LAPS2). We included patients aged ≥18 years admitted with HF to one of 62 hospitals in the database. We applied all 6 models to the data and calculated the c-statistics. Results: We identified 13,163 patients ≥18 years old with a diagnosis of heart failure. Median age was 74 years; approximately half were women; 65% of patients were white and 27% were black. In-hospital mortality was 4.3%. Bland-Altman plots revealed that, at higher predicted mortality, the Premier model outperformed the clinical models. Discrimination of the models varied: ADHERE model (0.68); EFFECT (0.70); GWTG-HF, Peterson (0.69); GWTG-HF, Eapen (0.70); LAPS2 (0.74); Premier (0.81) (Figure). Conclusions: Clinically-derived inpatient heart failure mortality models exhibited similar performance with c statistics hovering around 0.70. A generic clinical mortality prediction model (LAPS2) had slightly better performance, as did a detailed administrative model. Any of these models may be useful for severity adjustment in comparative effectiveness studies of heart failure patients. When clinical data are not available, the administrative model performs similarly to clinical models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Espen Jimenez-Solem ◽  
Tonny S. Petersen ◽  
Casper Hansen ◽  
Christian Hansen ◽  
Christina Lioma ◽  
...  

AbstractPatients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alcade Rudakemwa ◽  
Amyl Lucille Cassidy ◽  
Théogène Twagirumugabe

Abstract Background Reasons for admission to intensive care units (ICUs) for obstetric patients vary from one setting to another. Outcomes from ICU and prediction models are not well explored in Rwanda owing to lack of appropriate scores. This study aimed to assess reasons for admission and accuracy of prediction models for mortality of obstetric patients admitted to ICUs of two public tertiary hospitals in Rwanda. Methods We prospectively collected data from all obstetric patients admitted to the ICUs of the two public tertiary hospitals in Rwanda from March 2017 to February 2018 to identify reasons for admission, demographic and clinical characteristics, outcome including death and its predictability by both the Modified Early Obstetric Warning Score (MEOWS) and quick Sequential Organ Failure Assessment (qSOFA). We analysed the accuracy of mortality prediction models by MEOWS or qSOFA by using logistic regression adjusting for factors associated with mortality. Area under the Receiver Operating characteristic (AUROC) curves is used to show the predicting capacity for each individual tool. Results Obstetric patients (n = 94) represented 12.8 % of all 747 ICU admissions which is 1.8 % of all 4.999 admitted women for pregnancy or labor. Sepsis (n = 30; 31.9 %) and obstetric haemorrhage (n = 24; 25.5 %) were the two commonest reasons for ICU admission. Overall ICU mortality for obstetric patients was 54.3 % (n = 51) with average length of stay of 6.6 ± 7.525 days. MEOWS score was an independent predictor of mortality (adjusted (a)OR 1.25; 95 % CI 1.07–1.46) and so was qSOFA score (aOR 2.81; 95 % CI 1.25–6.30) with an adjusted AUROC of 0.773 (95 % CI 0.67–0.88) and 0.764 (95 % CI 0.65–0.87), indicating fair accuracy for ICU mortality prediction in these settings of both MEOWS and qSOFA scores. Conclusions Sepsis and obstetric haemorrhage were the commonest reasons for obstetric admissions to ICU in Rwanda. MEOWS and qSOFA scores could accurately predict ICU mortality of obstetric patients in resource-limited settings, but larger studies are needed before a recommendation for their use in routine practice in similar settings.


Sign in / Sign up

Export Citation Format

Share Document