Memory in helper T cells of minor histocompatibility antigens, revealedin vivo by alloimmunizations in combination with Thy-1 antigen

1992 ◽  
Vol 22 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Elizabeth Lightstone ◽  
Jacqueline Marvel ◽  
Avrion Mitchison
1982 ◽  
Vol 155 (6) ◽  
pp. 1766-1784 ◽  
Author(s):  
DH Raulet ◽  
MJ Bevan

We investigated the antigenic requirements for restimulation of H-2- restricted cytolytic T lymphocytes (CTL) in vitro to determine whether H-2 I region-restricted helper T cells are required in these responses. In one set of experiments, we studied the in vitro response of (responder x nonresponder)F(1) female T cells to the male antigen H-Y. We chose to examine this response because it has been suggested that the defect in nonresponder strains is a failure of helper T cells to recognize H-Y in association with nonresponder I region determinants. However, we find that nonresponder male stimulator cells are as effective as F(1) male stimulator cells at inducing H-Y-specific CTL responses. This finding calls into question reports that secondary CTL responses to H-Y are dependent upon the activation of H-Y- specific helper T cells restricted to responder type I region determinants. In a second set of experiments, we examined the requirements for restimulation of H-2-restricted T cells specific for minor-histocompatibility antigens from long-term mixed lymphocyte cultures. These cultures were established by repeatedly restimulating cultures of specific T cells with H- 2-matched stimulator cells expressing foreign minor histocompatibility antigens. We found that H-2D-restricted T ceils, including CTL, could be restimulated with cells that were matched with the responding cells at only the D region genes. This response did not appear to result from positive allogeneic effects or from antigen processing and "representation" by responder type APC that might contaminate the cultures. Thus, we find no evidence for a requirement for I region-restricted helper T cells in these CTL responses. However, helper T cells are required because we find that CTL lines derived by limit-dilution cloning from these long-term MLC are absolutely dependent upon exogenous helper factors for growth. The most simple interpretation of these results is that the helper cells are restricted to H-2 antigens other than I region antigens or to antigens that code outside of the H-2 complex. Finally, we show that factor-dependent CTL lines must recognize their specific antigen to proliferate, even in the presence of exogenous factors. The requirement of activated CTL for antigen to proliferate provides an explanation for how specific CTL can be selectively enriched in MLC by specific antigen stimulation. Furthermore, it is at variance with reports that memory CTL or activated CTL require only interleukin 2 for restimulation.


Haematologica ◽  
2008 ◽  
Vol 93 (10) ◽  
pp. 1535-1543 ◽  
Author(s):  
M. Griffioen ◽  
H.M. E. van Egmond ◽  
H. Barnby-Porritt ◽  
M. A.W.G. van der Hoorn ◽  
R. S. Hagedoorn ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (17) ◽  
pp. 3684-3692 ◽  
Author(s):  
Anita N. Stumpf ◽  
Edith D. van der Meijden ◽  
Cornelis A. M. van Bergen ◽  
Roel Willemze ◽  
J. H. Frederik Falkenburg ◽  
...  

Abstract Potent graft-versus-leukemia (GVL) effects can be mediated by donor-derived T cells recognizing minor histocompatibility antigens (mHags) in patients treated with donor lymphocyte infusion (DLI) for relapsed hematologic malignancies after HLA-matched allogeneic stem cell transplantation (alloSCT). Donor-derived T cells, however, may not only induce GVL, but also mediate detrimental graft-versus-host disease (GVHD). Because HLA-class II is under noninflammatory conditions predominantly expressed on hematopoietic cells, CD4+ T cells administered late after alloSCT may selectively confer GVL without GVHD. Although a broad range of different HLA-class I–restricted mHags have been identified, the first 2 autosomal HLA-class II–restricted mHags have only recently been characterized. By screening a recombinant bacteria cDNA expression library, we identified 4 new HLA-class II–restricted mHags recognized by CD4+ T cells induced in a patient with relapsed chronic myeloid leukemia who achieved long-term complete remission and experienced only mild GVHD of the skin after DLI. All CD4+ T cells were capable of recognizing the mHags presented by HLA-DR surface molecules on primary hematopoietic cells, but not on skin-derived (cytokine-treated) fibroblasts. The selective recognition of hematopoietic cells as well as the balanced population frequencies and common HLA-DR restriction elements make the novel mHags possible targets for development of immunotherapeutic strategies.


1979 ◽  
Vol 149 (2) ◽  
pp. 545-550 ◽  
Author(s):  
E Goulmy ◽  
J D Hamilton ◽  
B A Bradley

A monolayer absorption technique was used to test the hypothesis that killer cells directed to self HLA-associated minor histocompatibility antigens (H-Y) were divisible into subsets. The results showed that sensitized killer cells, which recognized two combined antigens HLA-A2; H-Y and HLA-B7; H-Y could indeed be divided into two populations. One was directed to HLA-A2; H-Y and the other to HLA-B7; H-Y. These results can be interpreted in the context of the altered self hypothesis. However, when interpreted in the context of the dual recognition hypothesis, they strongly suggest that independant clones of killer T cells exist which are committed to the recognition of self HLA.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3955-3957 ◽  
Author(s):  
Freke M. Kloosterboer ◽  
Simone A. P. van Luxemburg-Heijs ◽  
Ronald A. van Soest ◽  
H. M. Esther van Egmond ◽  
Roel Willemze ◽  
...  

T cells directed against hematopoietic-restricted minor histocompatibility antigens (mHags) may mediate graft-versus-leukemia (GVL) reactivity without graft-versus-host disease (GVHD). Recently, the HLA-A24–restricted mHag ACC-1 and the HLA-B44–restricted mHag ACC-2 encoded by separate polymorphisms within the BCL2A1 gene were characterized. Hematopoietic-restricted expression was suggested for these mHags. We demonstrate BCL2-related protein A1 (BCL2A1) mRNA expression in mesenchymal stromal cells (MSCs) that was up-regulated by the inflammatory cytokines tumor necrosis factor α (TNF-α) and/or interferon γ (IFN-γ). Analysis of cytotoxicity and IFN-γ production illustrated that ACC-2–specific T cells did not recognize untreated MSCs or IFN-γ–treated MSCs but showed specific recognition and killing of MSCs treated with TNF-α plus IFN-γ. We hypothesize that under steady-state circumstances BCL2A1-specific T cells may exhibit relative specificity for hematopoietic tissue, but reactivity against nonhematopoietic cells may occur when inflammatory infiltrates are present. Thus, the role of BCL2A1-specific T cells in differential induction of GVL reactivity and GVHD may depend on the presence of inflammatory responses that may occur during GVHD.


2002 ◽  
Vol 8 (4) ◽  
pp. 410-414 ◽  
Author(s):  
Anne M. Dickinson ◽  
Xiao-Nong Wang ◽  
Lisbet Sviland ◽  
Florry A. Vyth-Dreese ◽  
Graham H. Jackson ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 413-413
Author(s):  
Tetsuya Nishida ◽  
Ana Kostic ◽  
David G. Maloney ◽  
Rainer F. Storb ◽  
Stanley R. Riddell

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) following non-myeloablative (NM) conditioning is a promising approach for treating patients with advanced fludarabine refractory CLL. In this setting, a graft versus leukemia (GVL) effect mediated by donor T cells is critical for tumor eradication. We have evaluated the development of alloreactive and CLL-reactive cytotoxic T lymphocyte (CTL) responses in patients after NM-HSCT to determine if the generation of detectable T cell responses was associated with an antitumor response. Seven patients with fludarabine refractory CLL were conditioned with fludarabine (30mg/m2 x 3 doses) and total body irradiation (2 Gy) prior to receiving G-CSF mobilized peripheral blood stem cells from an HLA matched donor. Peripheral blood mononuclear cells (PBMC) were obtained from the recipient pretransplant and at intervals after NM-HSCT. When chimerism showed a major proportion of donor CD3+ T cells, the postransplant PBMC were stimulated in vitro with recipient CLL cells from the pretransplant collections. CLL cells lack or express low levels of co-stimulatory and adhesion molecules, and are poor stimulators of T cells in vitro. Thus, prior to their use as stimulators and targets, the CLL cells were activated with CD40 ligand (CD40L), which upregulates costimulatory, adhesion, and MHC molecule expression, and turns CLL cells into effective antigen presenting cells. The cultures were stimulated weekly and supplemented with IL2 and IL7. After two stimulations, the T cell lines were tested for cytotoxicity against donor and recipient target cells including recipient CLL. T cell lines generated from four patients with a good antitumor response after NM-HSCT exhibited cytotoxicity against recipient CLL and EBV transformed B cells (B-LCL), but not against donor B-LCL. By contrast, T cell lines generated from three patients with persistent or progressive disease after NM-HSCT did not have cytotoxicity against recipient CLL, despite the development of GVHD in all patients. Multiparameter flow cytometry and IFN-g secretion assay of T cell lines from patients with an antitumor response showed that both CD8+ and CD4+ T cells produced INF-g in response to recipient CLL. We sorted and expanded CD8+ INF-g+ and CD4+ IFN-g+ T cells and both subsets were able to lyse CLL cells. The cytotoxicity of CD4+ and CD8+ T cells was inhibited completely by concanamycin A, suggesting perforin is the major mechanism for leukemia cell lysis. Twenty-one CD8+ T cell clones specific for distinct minor histocompatibility antigens expressed on CLL were isolated from T cell lines of the four responding patients. Multiple specificities were recognized in three of the four patients. Screening a cDNA expression library has identified the genes encoding two minor histocompatibility antigens recognized by CD8+ T cells, and their characterization is in progress. These findings suggest that the development after NM-HSCT of early, diverse, alloreactive T cell responses specific for antigens expressed by CLL may be an important predictor of outcome. The identification of the antigens recognized may facilitate the development of strategies to evoke an effective antitumor response in a larger fraction of patients.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-3-SCI-3
Author(s):  
Jerome Ritz

Abstract The clinical outcomes of allogeneic hematopoietic stem cell transplantation (HSCT) have steadily improved in the last two decades, but this remains a potentially toxic treatment approach and further improvements are needed. Both the benefits and potential toxicities of allogeneic HSCT derive from the replacement of the recipient’s immune system with donor cells. Donor T cells clearly play a critical role as the primary mediators of both graft-versus-leukemia (GVL) and graft-versus-host-disease (GVHD) after transplant. In this setting, donor T cells targeting tumor-specific antigens provide specific GVL activity and donor T cells targeting broadly expressed minor histocompatibility antigens (allo-antigens) lead to GVHD. Donor T cells targeting minor histocompatibility antigens with restricted expression on both normal and malignant hematopoietic cells in the recipient contribute to GVL as well as to the elimination of recipient hematopoietic cells and the establishment of full donor hematopoiesis. Although donor B cells do not contribute to acute GVHD, considerable evidence now suggests that donor B cells also play an important role in chronic GVHD (cGVHD). In male patients with female donors, Y chromosome encoded (HY) proteins represent a clinically relevant set of widely expressed minor histocompatibility antigens (mHA) that are frequently recognized by both donor T cells and B cells. HY antibodies typically develop four to eight months after HSCT and the development of HY antibodies is significantly associated with the development of cGVHD. Antibodies to autosomal mHA and tumor-associated antigens have also been detected. Development of antibodies to mHA has also been associated with a lower risk of relapse suggesting a role for donor B cells in GVL. Murine models have clearly demonstrated that donor B cell reconstitution after allogeneic HSCT contributes to the development of cGVHD. In one of these models, depletion of germinal center B cells prevents the development of bronchiolitis obliterans and other pathologic features of cGVHD. The homeostatic cytokine B-cell activating factor (BAFF) plays an important role in the regulation of donor B cell reconstitution. BAFF promotes B-cell proliferation, differentiation, and survival; but persistent, high levels of BAFF also support the survival of auto and allo-reactive B cells. Patients with cGVHD typically have delayed B-cell reconstitution and low numbers of circulating B cells associated with high levels of BAFF. A high BAFF to B-cell ratio promotes survival of antigen-activated B cells and prevents or delays the development of B-cell tolerance after transplant. The important role of B cells in cGVHD has been confirmed by numerous clinical reports demonstrating the efficacy of B-cell directed therapy with rituximab in patients with established cGVHD. Overall response rates of 40 to 70 percent have been reported, and clinical responses have been associated with reduced titers of allo-reactive antibodies and restoration of normal B-cell homeostasis, with increased numbers of circulating B cells and lower levels of BAFF after recovery from treatment. The efficacy of rituximab in the treatment of established cGVHD has led to recent studies evaluating rituximab as a prophylactic therapy for cGVHD. The results of single institution trials suggest that this may be an effective approach and further randomized multi-center trials evaluating the role of rituximab for cGVHD prophylaxis are currently in development. The efficacy of rituximab has also led to the evaluation of other B cell directed therapies in murine models. In particular, selective inhibitors of B cell signaling pathways have been developed and appear to be effective in preventing cGVHD in these model systems. Further evaluation of these new agents in the treatment and prevention of cGVHD is in development. Disclosures: Off Label Use: Rituximab - Use in treatment of chronic GVHD..


Sign in / Sign up

Export Citation Format

Share Document