Comparison of methane production performance of vinegar residue under liquid‐ and solid‐state conditions

Author(s):  
Chao Song ◽  
Jiayu Feng ◽  
Ligong Wang ◽  
Fanfan Cai ◽  
Chang Chen ◽  
...  
2011 ◽  
Vol 64 (1) ◽  
pp. 70-76 ◽  
Author(s):  
D. Cysneiros ◽  
A. Thuillier ◽  
R. Villemont ◽  
A. Littlestone ◽  
T. Mahony ◽  
...  

Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 °C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 °C, than at 37 °C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 °C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 °C. Methane yields were 0.215 m3 CH4 kg−1 VS−1 added, 0.160 m3 CH4 kg−1 VS−1 added and 0.125 m3 CH4 kg−1 VS−1 added at 37, 15 and 10 °C, respectively. Methanogenesis was not strongly affected at 15 °C but it became rate-limiting at 10 °C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.


2016 ◽  
Vol 73 (12) ◽  
pp. 2913-2920 ◽  
Author(s):  
Yue-Gan Liang ◽  
Beijiu Cheng ◽  
You-Bin Si ◽  
De-Ju Cao ◽  
Dao-Lin Li ◽  
...  

Abstract The effects of solid-state NaOH pretreatment on the efficiency of methane production from semi-dry anaerobic digestion of rose (Rosa rugosa) stalk were investigated at various NaOH loadings (0, 1, 2, and 4% (w/w)). Methane production, process stability and energy balance were analyzed. Results showed that solid-state NaOH pretreatment significantly improved biogas and methane yields of 30-day anaerobic digestion, with increases from 143.7 mL/g volatile solids (VS) added to 157.1 mL/g VS –192.1 mL/g VS added and from 81.8 mL/g VS added to 88.8 mL/g VS–117.7 mL/g VS added, respectively. Solid-state NaOH pretreatment resulted in anaerobic digestion with higher VS reduction and lower technical digestion time. The 4% NaOH-treated group had the highest methane yield of 117.7 mL/g VS added, which was 144% higher compared to the no NaOH-treated group, and the highest net energy recovery. Higher rate of lignocellulose breakage and higher process stability of anaerobic digestion facilitated methane production in the NaOH-pretreated groups.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Safoora Mirmohamadsadeghi ◽  
Keikhosro Karimi ◽  
Akram Zamani ◽  
Hamid Amiri ◽  
Ilona Sárvári Horváth

Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses.


Sign in / Sign up

Export Citation Format

Share Document