The relationship between sediment temperature and methane ebullition in a small eutrophic reservoir: insights from two years of intensive monitoring

2019 ◽  
Author(s):  
Sarah Waldo
1983 ◽  
Vol 59 (5) ◽  
pp. 810-816 ◽  
Author(s):  
Joseph Th. J. Tans ◽  
Dick C. J. Poortvliet

✓ Pressure-volume indices (PVI's) were determined for a heterogeneous group of 40 patients who underwent continuous monitoring of ventricular fluid pressure (VFP). The main purpose was to investigate the relationship between VFP and PVI and to establish the significance of the measured PVI values. Determinations of PVI appear to be useful only when baseline VFP is under 20 mm Hg, maximum VFP is under 30 mm Hg, A-waves are absent, and B-waves do not occur numerously. The authors advocate starting with 1-ml bolus infusions, and then, when the resulting pressure rise exceeds 4 mm Hg, additional bolus infusions can be omitted. Results indicate that 13 ml and 10 ml are the key values for the PVI. A PVI of less than 13 ml indicates the need for either reduction of VFP and improvement of compliance or intensive monitoring of both the VFP and the volume-pressure relationship; if the PVI is below 10 ml, anti-hypertensive treatment is almost always necessary. Values of PVI's between 13 and 18 ml, although pathological, usually have no therapeutic consequences.


Author(s):  
Vanessa Virginia Barbosa ◽  
Juliana dos Santos Severiano ◽  
Dayany Aguiar De Oliveira ◽  
José Etham de Lucena Barbosa

Phosphorus (P) is the main nutrient responsible for the harmful effects caused by the enrichment of aquatic systems, and submerged macrophytes play an important role in this process, since they can both remove and release this nutrient in environmental compartments. The present study aimed to evaluate the influence of submerged macrophytes on P in the water, sediment, and water-sediment interface in a eutrophic reservoir in a semiarid region and to evaluate the relationship between the concentration of this nutrient in macrophyte tissue and that available in the different compartments. Were performed ten collection campaigns, in three reservoir locations: at the entrance of the Paraíba River; in the intermediate area between the river entrance and the dam and at the dam. We observed a difference in the P concentration inside and outside macrophyte banks, and this difference was determined by the abundance and intensity of macrophyte growth and decomposition. In sites with extensive vegetation banks and where decomposition was more intense, macrophytes released P to the water-sediment interface and sediment compartments. By contrast, in sites with smaller vegetation banks and where macrophytes did not show reduced abundance, P was removed from these compartments. The entry of new water originating from river water transfer was an important modifying factor of the physical and chemical characteristics and macrophyte abundance. The zone where the river enters the reservoir was the area most affected by the water transfer. The macrophyte decomposition in this zone resulted in the highest P concentration in the water-sediment interface and sediment compartments, which demonstrates the importance of macrophytes in the fertilization of water bodies and, consequently, in the eutrophication process. In turn, in the dam zone, where the macrophyte banks were more stable and without large variations in abundance, P was removed from the compartments. A relationship between P in macrophyte tissue and that available in the environment was observed, particularly at the water-sediment interface, indicating that this compartment was the main P source for these plants, which demonstrated that these plants store higher amounts of P in nutrient-rich sediment and water, functioning as an indicator of the nutritional status of a reservoir.


Author(s):  
Ryuichiro Shinohara ◽  
Kenji Tsuchiya ◽  
Ayato Kohzu

Abstract We investigated whether recent springtime water temperature increases in a shallow eutrophic lake affected bottom sediment temperature and fluxes of ammonia (NH4+) and phosphate (PO43−) from the sediment. We conducted a lake-wide survey of Lake Kasumigaura, Japan, and analyzed the relationship between water temperature increases in spring and NH4+ and PO43− release fluxes. We also developed a numerical model to analyze how water temperature increase affects sediment temperature. Water temperature in May increased during 2010–2019 at a rate of 1.8–3.2 °C decade−1. The numerical simulation results showed that the water temperature increase was accompanied by a sediment temperature increase from a minimum of 18.3 °C in 2011 to a maximum of 21.6 °C in 2015. Despite the substantial difference in the observed sediment temperature (2.9 °C), no significant differences in NH4+ and PO43− fluxes in May between 2013/2014 and 2015 were found. These results suggest that both water and sediment temperatures are increasing in Lake Kasumigaura in spring, but it is unclear whether this warming has affected NH4+ and PO43− releases from the sediment. However, because a nonlinear response to sediment temperature was observed, future springtime warming may accelerate NH4+ and PO43− releases.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thomas Parr

Abstract This commentary focuses upon the relationship between two themes in the target article: the ways in which a Markov blanket may be defined and the role of precision and salience in mediating the interactions between what is internal and external to a system. These each rest upon the different perspectives we might take while “choosing” a Markov blanket.


2019 ◽  
Vol 42 ◽  
Author(s):  
Paul Benjamin Badcock ◽  
Axel Constant ◽  
Maxwell James Désormeau Ramstead

Abstract Cognitive Gadgets offers a new, convincing perspective on the origins of our distinctive cognitive faculties, coupled with a clear, innovative research program. Although we broadly endorse Heyes’ ideas, we raise some concerns about her characterisation of evolutionary psychology and the relationship between biology and culture, before discussing the potential fruits of examining cognitive gadgets through the lens of active inference.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Sign in / Sign up

Export Citation Format

Share Document