scholarly journals Α Hybrid Approach to Atmospheric Modeling that Combines Machine Learning with a Physics-Based Numerical Model

2021 ◽  
Author(s):  
Troy Arcomano ◽  
Istvan Szunyogh ◽  
Alexander Wikner ◽  
Jaideep Pathak ◽  
Brian R Hunt ◽  
...  
2021 ◽  
Author(s):  
Troy Arcomano ◽  
Istvan Szunyogh ◽  
Alexander Wikner ◽  
Jaideep Pathak ◽  
Brian R Hunt ◽  
...  

2010 ◽  
Vol 14 (2) ◽  
pp. 159-181
Author(s):  
MUNPYO HONG ◽  
MIYOUNG SHIN ◽  
Shinhye Park ◽  
Hyungmin Lee

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


2021 ◽  
Author(s):  
Eunjeong Park ◽  
Kijeong Lee ◽  
Taehwa Han ◽  
Hyo Suk Nam

BACKGROUND Assessing the symptoms of proximal weakness caused by neurological deficits requires expert knowledge and experienced neurologists. Recent advances in artificial intelligence and the Internet of Things have resulted in the development of automated systems that emulate physicians’ assessments. OBJECTIVE This study provides an agreement and reliability analysis of using an automated scoring system to evaluate proximal weakness by experts and non-experts. METHODS We collected 144 observations from acute stroke patients in a neurological intensive care unit to measure the symptom of proximal weakness of upper and lower limbs. A neurologist performed a gold standard assessment and two medical students performed identical tests as non-expert assessments for manual and machine learning-based scaling of Medical Research Council (MRC) proximal scores. The system collects signals from sensors attached on patients’ limbs and trains a machine learning assessment model using the hybrid approach of data-level and algorithm-level methods for the ordinal and imbalanced classification in multiple classes. For the agreement analysis, we investigated the percent agreement of MRC proximal scores and Bland-Altman plots of kinematic features between the expert- and non-expert scaling. In the reliability analysis, we analysed the intra-class correlation coefficients (ICCs) of kinematic features and Krippendorff’s alpha of the three observers’ scaling. RESULTS The mean percent agreement between the gold standard and the non-expert scaling was 0.542 for manual scaling and 0.708 for IoT-assisted machine learning scaling, with 30.63% enhancement. The ICCs of kinematic features measured using sensors ranged from 0.742 to 0.850, whereas the Krippendorff’s alpha of manual scaling for the three observers was 0.275. The Krippendorff’s alpha of machine learning scaling increased to 0.445, with 61.82% improvement. CONCLUSIONS Automated scaling using sensors and machine learning provided higher inter-rater agreement and reliability in assessing acute proximal weakness. The enhanced assessment supported by the proposed system can be utilized as a reliable assessment tool for non-experts in various emergent environments.


2021 ◽  
Author(s):  
Sidra Mehtab ◽  
Jaydip Sen

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modelled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of four years: 2015 – 2018. Based on the NIFTY data during 2015 – 2018, we build various predictive models using machine learning approaches, and then use those models to predict the “Close” value of NIFTY 50 for the year 2019, with a forecast horizon of one week, i.e., five days. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual “Close” values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network (CNN) with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3616-3620

The Developing enthusiasm for the field of opinion mining and its applications in various regions of information and also, sociology has activated numerous researchers to investigate the field The chance to catch the opinion of the overall public about get-togethers, political developments, organization systems, advertising efforts, and item inclinations has raised expanding enthusiasm of both scientific community (as a result of the energizing open difficulties) and the business world (due to the wonderful advantages for promoting and money related market expectation). Today, sentiment analysis investigation has its applications in a few unique situations. There are a decent number of organizations, both huge and little scale, that focuses on opinions and sentiments as a major aspect of their central goal. This work introduces hybrid approach that includes lexicon based approach and machine learning approach for extracting aspects and sentiments


Sign in / Sign up

Export Citation Format

Share Document