Non-point source pollution modelling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin'anjiang catchment, China

2013 ◽  
Vol 28 (4) ◽  
pp. 1627-1640 ◽  
Author(s):  
Xiaoyan Zhai ◽  
Yongyong Zhang ◽  
Xuelei Wang ◽  
Jun Xia ◽  
Tao Liang
2014 ◽  
Vol 1073-1076 ◽  
pp. 1751-1755
Author(s):  
Fang Ma ◽  
Xiao Feng Jiang ◽  
Li Wang ◽  
Dan Shan ◽  
Xiong Wei Liang ◽  
...  

The Soil and Water Assessment Tool (SWAT) model was examined for its applicability in modeling stream-flow and nutrients (total nitrogen, TN and total phosphorus, TP) in Ashi River Basin, China covering an area of 3545 km2. This model was calibrated by using the observed data of monthly flow during 1996-2005 and nutrients (TN and TP) during 2006-2008, and validated by using the observed data of monthly flow during 2006-2010 and water quality during 2009-2010. For stream-flow, the monthly results of RE, R2 and ENS values reached 6.42%, 0.61 and 0.59 respectively for calibration period, whereas these were-12.83%, 0.69 and 0.67, respectively for validation period; for TN calibration, values of RE, R2 and ENS were-18.33%, 0.64 and 0.55 respectively, and for validation period they were-17.34%, 0.68 and 0.57 respectively; for TP calibration, values of RE, R2 and ENS were-4.32%, 0.61 and 0.56 respectively, and for validation period they were-18.02%, 0.67 and 0.58 respectively. Results show that SWAT has applicability in modeling stream-flow and nutrients (TN and TP) in cold and flat area.


2012 ◽  
Vol 209-211 ◽  
pp. 2018-2022
Author(s):  
Yuan Nan Long ◽  
Chang Bo Jiang ◽  
Shi Xiong Hu ◽  
Bei Chu

Non-point source pollution (NPSP) is an important factor that affects water quality. To study the effect of the pollution on water quality, the Soil and Water Assessment Tool (SWAT) is applied to simulate runoff and nutrient concentrations in the Lianshui Watershed. In the monthly time step, the model’s Nash-Sutcliffe coefficient and the coefficient of determination indicated that the values of simulated runoff, nutrient concentrations are acceptably closer to the measured data. Then, the study concluded that NPSP is the dominant factor affecting the water quality of the Lianshui River. Finally, the study also explored the temporal and spatial distribution characteristics of NPSP in the watershed.


2005 ◽  
Vol 5 ◽  
pp. 7-12 ◽  
Author(s):  
T. Pohlert ◽  
J. A. Huisman ◽  
L. Breuer ◽  
H.-G. Frede

Abstract. We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validation period (April 2002 to January 2003), respectively. However, the model efficiency for daily loads is low (0.15), which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.


2019 ◽  
Vol 12 (5) ◽  
pp. 1746
Author(s):  
Rafael Adriano de Castro Adriano de Castro ◽  
Elias Machado

O modelo Soil and Water Assessment Tool (SWAT) é amplamente utilizado para predizer o impacto das alterações no uso e no manejo do solo, entre outros, é extremamente sensível à qualidade dos dados de entrada.  Assim, antes da simulação é necessário que se realize uma análise de sensibilidade de tal forma que se possa dar ênfase maior à aquisição e refinamento de determinados dados, diminuir as incertezas e aumentar a confiança nos resultados gerados. Os resultados simulados na bacia do Rio das Pedras – Guarapuava, foram realizadas a análise de sensibilidade e a calibração do modelo SWAT. Após a calibração do modelo os resultados do Índice de Nash & Sutcliffe alterado (COE), do percentual de tendência (PBIAS), e o coeficiente de determinação (R²) foram, respectivamente, 0,69, -0,5 e 0,7, indicando bom ajuste entre a vazão média mensal da bacia Rio das Pedras simulada pelo modelo SWAT em relação aos dados observados.  Sensitivity analysis of hydrological parameters in the Rio das Pedras basin - Guarapuava-PR A B S T R A C TThe SWAT model is widely used to predict the impact of changes in land use and management, among others, is extremely sensitive to the quality of input data. Thus, prior to the simulation, it is necessary to perform a sensitivity analysis in such a way that greater emphasis can be placed on the acquisition and refinement of certain data, decrease uncertainties and increase confidence in the results generated. The simulated results in the Rio das Pedras - Guarapuava basin, were performed the sensitivity analysis and calibration of the SWAT model. After the calibration of the model, the results of the modified Nash & Sutcliffe Index (COE), percentage of trend (PBIAS), and coefficient of determination (R²) were, respectively, 0.69, -0.5 and 0.7, Indicating a good fit between the average monthly flow of the Rio das Pedras basin simulated by the SWAT model in relation to the observed data. 


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 993 ◽  
Author(s):  
Zhou Zhang ◽  
Ping Huang ◽  
Zhonghan Chen ◽  
Junmin Li

Non-point source pollution (NPS) is difficult to manage for watersheds, due to the scattering of pollution sources and uncertainty over the time it takes to accumulate. Since local agriculture and poultry rearing prevail, NPS occupies a large proportion of local pollution. In this paper, we modified the runoff module of the Soil and Water Assessment Tool (SWAT) to study the distribution properties and the effect of control of NPS in the Binjiang watershed in Southern China. The model was run from 2005 to 2014. The runoff simulation’s accuracy had apparently improved compared to the original model, as the Nash coefficient (Ens) had improved from 0.72 to 0.89, and the determination coefficient (R2) had improved from 0.75 to 0.91, an improvement in accuracy of 23.61% (Ens) and 21.33% (R2). Thus, the modified model (SWAT-m) is more adaptable for the simulation of extensive non-urban watersheds in subtropical monsoon climates. The validated model was used in further analysis. The results show that 82–90% of total nitrogen and 83–89% of total phosphorus were concentrated in the period from April to September annually. Through the introduction of the pollution generation potential parameter Φi, we obtained the descending order of all sub-basins in terms of their pollution generation potential. The critical source areas (CSAs) were found to be the northeast sub-basins in lower terrain that is used mainly for agricultural applications, accounting for 53% of the total watershed. The accumulation time is April to July, occupying 69% of annual generation. The simulation of management measures showed that NPS control has a good effect, with a 15 m filter strip in CSAs. Ammonia nitrogen and total phosphorus can be reduced apparently by 32% and 43%, respectively. The results may provide support for the management of NPS in watersheds under similar conditions.


2007 ◽  
Vol 87 (3) ◽  
pp. 329-344 ◽  
Author(s):  
A. R. Michaud ◽  
I. Beaudin ◽  
J. Deslandes ◽  
F. Bonn ◽  
C. A. Madramootoo

An agreement between the governments of the province of Québec and the State of Vermont calls for a 41% decrease in phosphorus (P) loads reaching Missisquoi Bay, the northern portion of Lake Champlain. The agreement particularly targets the agricultural sector, since 80% of non-point source P inputs to the bay are associated with cultivated lands. In order to identify sustainable cropping practices likely to help meet the target P loads, the SWAT (soil and water assessment tool) model was employed to assess hydrological performance, erosion processes and P mobility on the bay’s principal Québec P contributing tributary, the 630 km2 Pike River watershed. Strong in-watershed spatial clustering of vulnerability to non-point source exports highlights the need for targeted implementation of sustainable agricultural practices and soil conservation works to derive the reduction in P loads. Planting cover crops over the 10% most vulnerable lands would result in roughly a 21% d rop in overall P exports at the watershed outlet, whereas the same 10% randomly distributed over the watershed would only contribute to a 6% drop in P exports. The study of different field-scale management scenarios indicated that achieving the targeted 41% reduction in P exports would require the widespread (half the land devoted to annual crops) implementation of sustainable cropping practices, and the conversion of a specific 10% of the territory to either cover crops or permanent prairie land. Meeting the P target-loads would require additional investments in the protection of floodplains and riparian strips, the targeted construction of runoff-control structures, and the rapid soil incorporation of manures on lands dedicated to annual crops. Key words: Soil and water assessment tool, modelling, sediment, phosphorus, cropping system, scenario, best agricultural management practices


Sign in / Sign up

Export Citation Format

Share Document