Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model

2013 ◽  
Vol 28 (4) ◽  
pp. 2478-2498 ◽  
Author(s):  
Chen Sun ◽  
Li Ren
2020 ◽  
Author(s):  
Chen Sun ◽  
Xu Xu

<p>Haihe plain is an important food production area in China, facing an increasing water shortage. The water used for agriculture accounts for about 70% of total water resources. Thus, it is critical to optimize the irrigation scheduling for saving water and increasing crop water productivity (CWP). This study firstly simulated crop yield and CWP for winter wheat in historical scenario during 1961-2005 for Haihe plain using previously well-established SWAT model. Then scenarios under historical irrigation (scenario 1) and sufficient irrigation (scenario 2) were respectively simulated both with sufficient fertilizer. The crop yield in scenario 2 was considered as the potential crop yield. The optimal irrigation scheduling with sufficient fertilizer (scenario 3) was explored by iteratively adjusting irrigation scheduling based on the scenario 1 and previous studies related to water stress on crop growth. Results showed that net irrigation amount was reduced 23.1% in scenario 3 for winter wheat when compared with scenario 1. The CWP was 12.1% higher with very slight change of crop yield. Using optimal irrigation scheduling could save 8.8×10<sup>8</sup> m<sup>3</sup> irrigation water and reduce about 16.3% groundwater over-exploitation in winter wheat growth period. The corresponding yield was 18.5% less than potential yield for winter wheat but using less irrigation water. Therefore, it could be considered that the optimal irrigation was reasonable, which provided beneficial suggestions for increasing efficiency of agricultural water use with sustainable crop yield in Haihe plain.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sisay Ambachew Mekonnen ◽  
Assefa Sintayehu

Sesame (Sesamum indicum L.) is the leading oil seed crop produced in Ethiopia. It is the second most important agricultural commodity for export market in the country. It is well suited as an alternative crop production system, and it has low crop water requirement with moderate resistance to soil moisture deficit. The low land of North Western Ethiopia is the major sesame producer in the country, and the entire production is from rainfed. The rainfall distribution in North Western Ethiopia is significantly varied. This significant rainfall variability hampers the productivity of sesame. Irrigation agriculture has the potential to stabilize crop production and mitigate the negative impacts of variable rainfall. This study was proposed to identify critical growth stages during which sesame is most vulnerable to soil moisture deficit and to evaluate the crop water productivity of sesame under deficit irrigation. The performance of sesame to stage-wise and uniform deficit irrigation scheduling technique was tested at Gondar Agricultural Research Center (Metema Station), Northern Western Ethiopia. Eight treatments, four stage-wise deficit, two uniform deficit, one above optimal, and one optimal irrigation applications, were evaluated during the 2017 irrigation season. The experiment was designed as a randomized complete block design with three replications. Plant phenological variables, grain yield and crop water productivity, were used for performance evaluation. The result showed that deficit irrigation can be applied both throughout and at selected growth stages except the midseason stage. Imposing deficit during the midseason gave the lowest yield indicating the severe effect of water deficit during flowering and capsule initiation stages. When deficit irrigation is induced throughout, a 25% uniform deficit irrigation can give the highest crop water productivity with no or little yield reduction as compared with optimal irrigation. Implementing deficit irrigation scheduling technique will be beneficial for sesame production. Imposing 75% deficit at the initial, development, late season growth stages or 25% deficit irrigation throughout whole seasons will improve sesame crop water productivity.


Author(s):  
Morteza Goldani ◽  
Mohammad Bannayan ◽  
Fatemeh Yaghoubi

Abstract This two-year study aimed to determine the most appropriate irrigation scheduling and crop water productivity (CWP) of basil plant under controlled conditions in Ferdowsi University of Mashhad, Iran. The experimental layout was a split-plot design with three replications. Three deficit irrigation (DI) levels (DI0: 100%, DI30: 70% and DI60: 40% of the field capacity) and two basil cultivars (Green and Purple) were applied to main and subplots, respectively. The results showed that there was a decrease in yield and an increase in CWP for fresh leaves and fresh and dry herb by decreasing the irrigation water. However, a significant difference between fresh leaves and fresh and dry herb yield of DI0 and DI30 treatment was not observed. The Green basil had higher leaves and herb yield and CWP than other cultivar. A polynomial relationship was stablished between fresh leaves yield and crop evapotranspiration, however the yield response factor (Ky) indicated a linear relationship between the relative reduction in crop evapotranspiration vs. the relative reduction in yield. The Ky values were obtained as 0.70 and 0.76 for Green and Purple basil, respectively. The results revealed that the irrigation regime of 30% water saving could insure acceptable yield of basil plant and increase in CWP, especially for the Green basil cultivar.


2013 ◽  
Vol 10 (3) ◽  
pp. 295-300

There is an emerging need to support water and food policy and decision making at the global and national levels. A systematic tool that is capable of analyzing water-food relationships with high spatial resolutions would be very useful. A GEPIC model has recently been developed by integrating a crop growth model with a Geographic Information System (GIS). The GEPIC model was applied to simulate crop yield and crop water productivity (CWP) for maize at a spatial resolution of 30 arc-minutes on a global scale. A comparison between simulated yields and FAO statistical yields in 124 countries shows a good agreement. The simulated CWP values are mainly in line with the measured values reported in literature. The crop yield and CWP were simulated with the assumption of sufficient water and fertilizer supply, holding other factors unchanged. The simulation results show that many countries have the potentials in achieving high maize yields and CWP. More than 80% of African countries have the potential to double their CWP. This reflects the current poor water and fertilizer management there. The results imply that efforts have to be strengthened to improve water and fertilizer management should the malnutrition be reduced or even eliminated.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1826
Author(s):  
Manashi Paul ◽  
Masoud Negahban-Azar ◽  
Adel Shirmohammadi

The continuous growth of irrigated agricultural has resulted in decline of groundwater levels in many regions of Maryland and the Mid–Atlantic. The main objective of this study was to use crop water productivity as an index to evaluate different irrigation strategies including rainfed, groundwater, and recycled water use. The Soil and Water Assessment Tool (SWAT) was used to simulate the watershed hydrology and crop yield. It was used to estimate corn and soybean water productivity using different irrigation sources, including treated wastewater from adjacent wastewater treatment plants (WWTPs). The SWAT model was able to estimate crop water productivity at both subbasin and hydrologic response unit (HRU) levels. Results suggest that using treated wastewater as supplemental irrigation can provide opportunities for improving water productivity and save fresh groundwater sources. The total water productivity (irrigation and rainfall) values for corn and soybean were found to be 0.617 kg/m3 and 0.173 kg/m3, respectively, while the water productivity values for rainfall plus treated wastewater use were found to be 0.713 kg/m3 and 0.37 kg/m3 for corn and soybean, respectively. The outcomes of this study provide information regarding enhancing water management in similar physiographic regions, especially in areas where crop productivity is low due to limited freshwater availability.


2021 ◽  
Author(s):  
Márcio Facundo Aragão ◽  
Luis Gonzaga Pinheiro Neto ◽  
Thales Vinícius de Araújo Viana ◽  
Juan Manzano-Juarez ◽  
Claudivan Feitosa Lacerda ◽  
...  

Abstract Deficit irrigation (DI) strategies and soil cover are highly effective to improve the the water productivity in semi-arid regions. However, the effective monitoring of plant water status under DI strategies becomes crucial. The main objective of this study was to evaluate the use of thermal images to estimate the water status of melon plants cultivated in soil with and without mulching under different irrigation regimes. The experience was carried out from October to December 2018. The study was carried out in a randomized block design, in a split plot arrangement. Plots were composed by soil cover (with and without mulching with plant material), and subplots by 5 irrigation regimes (120, 100, 80, 60 and 40% of crop evapotranspiration-ETc), with five replicates. The following variables were evaluated: canopy temperature (Tcanopy), leaf water potential (Ψleaf), air temperature (Tair), soil moisture, crop yield and the thermal index (ΔT), this being defined as the difference between Tcanopy and Tair. ΔT showed high correlations with crop yield and crop water consumption, evidencing that thermography is an efficient tool to identify the water status of melon plants and could be employed for a proper irrigation scheduling under the tropical semi-arid scenarios. Moreover, the use of thermal images also allowed the identification of beneficial effects of soil cover on leaf water status and crop yield, mainly under moderate DI. The obtained results also demonstrate that mulching is essential to increase melon yield and water productivity in tropical regions.


Sign in / Sign up

Export Citation Format

Share Document