Brain tumour classification using siamese neural network and neighbourhood analysis in embedded feature space

Author(s):  
S. Deepak ◽  
P. M. Ameer
Author(s):  
Mukesh Kumar Chandrakar ◽  
Anup Mishra

Brain tumour segmentation is a growing research area in cognitive science and brain computing that helps the clinicians to plan the treatment as per the severity of the tumour cells or region. Accurate brain tumor detection requires measuring the volume, shape, boundaries, and other features. Deep learning is used to measure the characteristics without human intervention. The proper parameter setting and evaluation play a major role. Keeping this in mind, this paper focuses on varying window cascade architecture of convolutional neural network for brain tumour segmentation. The cognitive brain tumour computing is associated with the model using cognition concept for training data. The mixing of training data of different types of tumour images is applied to the model that ensures effective training. The feature space and training model improve the performance. The proposed architecture results in improvement in dice similarity, specificity, and sensitivity. The approach with improved performance is also compared with the existing approaches on the same dataset.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1155
Author(s):  
Naeem Islam ◽  
Jaebyung Park

RNA modification is vital to various cellular and biological processes. Among the existing RNA modifications, N6-methyladenosine (m6A) is considered the most important modification owing to its involvement in many biological processes. The prediction of m6A sites is crucial because it can provide a better understanding of their functional mechanisms. In this regard, although experimental methods are useful, they are time consuming. Previously, researchers have attempted to predict m6A sites using computational methods to overcome the limitations of experimental methods. Some of these approaches are based on classical machine-learning techniques that rely on handcrafted features and require domain knowledge, whereas other methods are based on deep learning. However, both methods lack robustness and yield low accuracy. Hence, we develop a branch-based convolutional neural network and a novel RNA sequence representation. The proposed network automatically extracts features from each branch of the designated inputs. Subsequently, these features are concatenated in the feature space to predict the m6A sites. Finally, we conduct experiments using four different species. The proposed approach outperforms existing state-of-the-art methods, achieving accuracies of 94.91%, 94.28%, 88.46%, and 94.8% for the H. sapiens, M. musculus, S. cerevisiae, and A. thaliana datasets, respectively.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


Author(s):  
М.Ю. Уздяев

Увеличение количества пользователей социокиберфизических систем, умных пространств, систем интернета вещей актуализирует проблему выявления деструктивных действий пользователей, таких как агрессия. При этом, деструктивные действия пользователей могут быть представлены в различных модальностях: двигательная активность тела, сопутствующее выражение лица, невербальное речевое поведение, вербальное речевое поведение. В статье рассматривается нейросетевая модель многомодального распознавания человеческой агрессии, основанная на построении промежуточного признакового пространства, инвариантного виду обрабатываемой модальности. Предлагаемая модель позволяет распознавать с высокой точностью агрессию в условиях отсутствия или недостатка информации какой-либо модальности. Экспериментальное исследование показало 81:8% верных распознаваний на наборе данных IEMOCAP. Также приводятся результаты экспериментов распознавания агрессии на наборе данных IEMOCAP для 15 различных сочетаний обозначенных выше модальностей. Growing user base of socio-cyberphysical systems, smart environments, IoT (Internet of Things) systems actualizes the problem of revealing of destructive user actions, such as various acts of aggression. Thereby destructive user actions can be represented in different modalities: locomotion, facial expression, associated with it, non-verbal speech behavior, verbal speech behavior. This paper considers a neural network model of multi-modal recognition of human aggression, based on the establishment of an intermediate feature space, invariant to the actual modality, being processed. The proposed model ensures high-fidelity aggression recognition in the cases when data on certain modality are scarce or lacking. Experimental research showed 81.8% correct recognition instances on the IEMOCAP dataset. Also, experimental results are given concerning aggression recognition on the IEMOCAP dataset for 15 different combinations of the modalities, outlined above.


Author(s):  
Geoffroy Chaussonnet ◽  
Sebastian Gepperth ◽  
Simon Holz ◽  
Rainer Koch ◽  
Hans-Jörg Bauer

Abstract A fully connected Artificial Neural Network (ANN) is used to predict the mean spray characteristics of prefilming airblast atomization. The model is trained from the planar prefilmer experiment from the PhD thesis of Gepperth (2020). The output of the ANN model are the Sauter Mean Diameter, the mean droplet axial velocity, the mean ligament length and the mean ligament deformation velocity. The training database contains 322 different operating points. Two types of model input quantities are investigated and compared. First, nine dimensional parameters are used as inputs for the model. Second, nine non-dimensional groups commonly used for liquid atomization are derived from the first set of inputs. The best architecture is determined after testing over 10000 randomly drawn ANN architectures, with up to 10 layers and up to 128 neurons per layer. The striking results is that for both types of model, the best architectures consist of only 3 hidden layer in the shape of a diabolo. This shape recalls the shape of an autoencoder, where the middle layer would be the feature space of reduced dimensionality. It was found that the model with dimensional input quantities always shows a lower test and validation errors than the one with non-dimensional input quantities. In general, the two types of models provide comparable accuracy, better than typical correlations of SMD and droplet velocity. Finally the extrapolation capability of the models was assessed by a training them on a confined domain of parameters and testing them outside this domain.


2020 ◽  
Vol 6 (4) ◽  
pp. 467-476
Author(s):  
Xinxin Liu ◽  
Yunfeng Zhang ◽  
Fangxun Bao ◽  
Kai Shao ◽  
Ziyi Sun ◽  
...  

AbstractThis paper proposes a kernel-blending connection approximated by a neural network (KBNN) for image classification. A kernel mapping connection structure, guaranteed by the function approximation theorem, is devised to blend feature extraction and feature classification through neural network learning. First, a feature extractor learns features from the raw images. Next, an automatically constructed kernel mapping connection maps the feature vectors into a feature space. Finally, a linear classifier is used as an output layer of the neural network to provide classification results. Furthermore, a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network. Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.


2020 ◽  
Vol 1662 ◽  
pp. 012010
Author(s):  
F Colecchia ◽  
J K Ruffle ◽  
G C Pombo ◽  
R Gray ◽  
H Hyare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document