scholarly journals Structure and Control of a Cell-Cell Adhesion Complex Associated With Spermiation in Rat Seminiferous Epithelium

2001 ◽  
Vol 22 (6) ◽  
pp. 1030-1052 ◽  
Author(s):  
ROBERT E. CHAPIN ◽  
ROBERT N. WINE ◽  
MARTHA W. HARRIS ◽  
CRISTOPH H. BORCHERS ◽  
JOSEPH K. HASEMAN
2003 ◽  
Vol 163 (6) ◽  
pp. 1351-1362 ◽  
Author(s):  
Nibedita Chattopadhyay ◽  
Zemin Wang ◽  
Leonie K. Ashman ◽  
Susann M. Brady-Kalnay ◽  
Jordan A. Kreidberg

The β1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for α3β1 integrin in association with the tetraspanin CD151 as a component of a cell–cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin–tetraspanin complex affects epithelial cell–cell adhesion at the level of gene expression both by regulating expression of PTPμ and by organizing a multimolecular complex containing PKCβII, RACK1, PTPμ, β-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.


1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


2002 ◽  
Vol 157 (7) ◽  
pp. 1247-1256 ◽  
Author(s):  
Leora Gollan ◽  
Helena Sabanay ◽  
Sebastian Poliak ◽  
Erik O. Berglund ◽  
Barbara Ranscht ◽  
...  

An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr–contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr–contactin chimera from the cell surface. These results suggest that Caspr serves as a “transmembrane scaffold” that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2513-2525 ◽  
Author(s):  
Rhonda R. Powell ◽  
Lesly A. Temesvari

Establishment of cell–cell adhesions, regulation of actin, and secretion are critical during development. Rab8-like GTPases have been shown to modulate these cellular events, suggesting an involvement in developmental processes. To further elucidate the function of Rab8-like GTPases in a developmental context, a Rab8-related protein (Sas1) of Dictyostelium discoideum was examined, the expression of which increases at the onset of development. Dictyostelium cell lines expressing inactive (N128I mutant) and constitutively active (Q74L mutant) Sas1 as green fluorescent protein (GFP)-Sas1 chimeras were generated. Cells expressing Sas1Q74L displayed numerous actin-rich membrane protrusions, increased secretion, and were unable to complete development. In particular, these cells demonstrated a reduction in adhesion as well as in the levels of a cell adhesion molecule, gp24 (DdCAD-1). In contrast, cells expressing Sas1N128I exhibited increased cell–cell adhesion and increased levels of gp24. Counting factor is a multisubunit signalling complex that is secreted in early development and controls aggregate size by negatively regulating the levels of cell adhesion molecules, including gp24. Interestingly, the Sas1Q74L mutant demonstrated increased levels of extracellular countin, a subunit of counting factor, suggesting that Sas1 may regulate trafficking of counting factor components. Together, the data suggest that Sas1 may be a key regulator of actin, adhesion and secretion during development.


2000 ◽  
Vol 6 (4) ◽  
pp. 953-959 ◽  
Author(s):  
Céline Roisin-Bouffay ◽  
Wonhee Jang ◽  
David R Caprette ◽  
Richard H Gomer

2013 ◽  
Vol 304 (2) ◽  
pp. E145-E159 ◽  
Author(s):  
Xiang Xiao ◽  
Dolores D. Mruk ◽  
C. Yan Cheng

During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.


Sign in / Sign up

Export Citation Format

Share Document