scholarly journals α3β1 integrin–CD151, a component of the cadherin–catenin complex, regulates PTPμ expression and cell–cell adhesion

2003 ◽  
Vol 163 (6) ◽  
pp. 1351-1362 ◽  
Author(s):  
Nibedita Chattopadhyay ◽  
Zemin Wang ◽  
Leonie K. Ashman ◽  
Susann M. Brady-Kalnay ◽  
Jordan A. Kreidberg

The β1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for α3β1 integrin in association with the tetraspanin CD151 as a component of a cell–cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin–tetraspanin complex affects epithelial cell–cell adhesion at the level of gene expression both by regulating expression of PTPμ and by organizing a multimolecular complex containing PKCβII, RACK1, PTPμ, β-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.

2001 ◽  
Vol 22 (6) ◽  
pp. 1030-1052 ◽  
Author(s):  
ROBERT E. CHAPIN ◽  
ROBERT N. WINE ◽  
MARTHA W. HARRIS ◽  
CRISTOPH H. BORCHERS ◽  
JOSEPH K. HASEMAN

1996 ◽  
Vol 109 (5) ◽  
pp. 1009-1016
Author(s):  
S. Funamoto ◽  
H. Ochiai

The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium.


1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


Author(s):  
W. Mark Saltzman

The external surface of the cell consists of a phospholipid bilayer which carries a carbohydrate-rich coat called the glycocalyx; ionizable groups within the glycocalyx, such as sialic acid (N-acetyl neuraminate), contribute a net negative charge to the cell surface. Many of the carbohydrates that form the glycocalyx are bound to membrane-associated proteins. Each of these components— phospholipid bilayer, carbohydrate-rich coat, membrane-associated protein—has distinct physicochemical characteristics and is abundant. Plasma membranes contain ∼50% protein, ∼45% lipid, and ∼5% carbohydrate by weight. Therefore, each component influences cell interactions with the external environment in important ways. Cells can become attached to surfaces. The surface of interest may be geometrically complex (for example, the surface of another cell, a virus, a fiber, or an irregular object), but this chapter will focus on adhesion between a cell and a planar surface. The consequences of cell–cell adhesion are considered further in Chapter 8 (Cell Aggregation and Tissue Equivalents) and Chapter 9 (Tissue Barriers to Molecular and Cellular Transport). The consequences of cell–substrate adhesion are considered further in Chapter 7 (Cell Migration) and Chapter 12 (Cell Interactions with Polymers). Since the growth and function of many tissue-derived cells required attachment and spreading on a solid substrate, the events surrounding cell adhesion are fundamentally important. In addition, the strength of cell adhesion is an important determinant of the rate of cell migration, the kinetics of cell–cell aggregation, and the magnitude of tissue barriers to cell and molecule transport. Cell adhesion is therefore a major consideration in the development of methods and materials for cell delivery, tissue engineering, and tissue regeneration. The most stable and versatile mechanism for cell adhesion involves the specific association of cell surface glycoproteins, called receptors, and complementary molecules in the extracellular space, called ligands. Ligands may exist freely in the extracellular space, they may be associated with the extracellular matrix, or they may be attached to the surface of another cell. Cell–cell adhesion can occur by homophilic binding of identical receptors on different cells, by heterophilic binding of a receptor to a ligand expressed on the surface of a different cell, or by association of two receptors with an intermediate linker. Cell–matrix adhesion usually occurs by heterophilic binding of a receptor to a ligand attached to an insoluble element of the extracellular matrix.


2002 ◽  
Vol 157 (7) ◽  
pp. 1247-1256 ◽  
Author(s):  
Leora Gollan ◽  
Helena Sabanay ◽  
Sebastian Poliak ◽  
Erik O. Berglund ◽  
Barbara Ranscht ◽  
...  

An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr–contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr–contactin chimera from the cell surface. These results suggest that Caspr serves as a “transmembrane scaffold” that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.


2014 ◽  
Vol 10 (4) ◽  
pp. 838-850 ◽  
Author(s):  
Sandeep Kumar ◽  
Alakesh Das ◽  
Shamik Sen

This paper probes the influence of extracellular matrix density on cell–cell adhesion and its relevance to EMT.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2513-2525 ◽  
Author(s):  
Rhonda R. Powell ◽  
Lesly A. Temesvari

Establishment of cell–cell adhesions, regulation of actin, and secretion are critical during development. Rab8-like GTPases have been shown to modulate these cellular events, suggesting an involvement in developmental processes. To further elucidate the function of Rab8-like GTPases in a developmental context, a Rab8-related protein (Sas1) of Dictyostelium discoideum was examined, the expression of which increases at the onset of development. Dictyostelium cell lines expressing inactive (N128I mutant) and constitutively active (Q74L mutant) Sas1 as green fluorescent protein (GFP)-Sas1 chimeras were generated. Cells expressing Sas1Q74L displayed numerous actin-rich membrane protrusions, increased secretion, and were unable to complete development. In particular, these cells demonstrated a reduction in adhesion as well as in the levels of a cell adhesion molecule, gp24 (DdCAD-1). In contrast, cells expressing Sas1N128I exhibited increased cell–cell adhesion and increased levels of gp24. Counting factor is a multisubunit signalling complex that is secreted in early development and controls aggregate size by negatively regulating the levels of cell adhesion molecules, including gp24. Interestingly, the Sas1Q74L mutant demonstrated increased levels of extracellular countin, a subunit of counting factor, suggesting that Sas1 may regulate trafficking of counting factor components. Together, the data suggest that Sas1 may be a key regulator of actin, adhesion and secretion during development.


Sign in / Sign up

Export Citation Format

Share Document