Three‐dimensional cell‐laden collagen scaffolds: From biochemistry to bone bioengineering

Author(s):  
Lucas Fabricio Bahia Nogueira ◽  
Bianca C. Maniglia ◽  
Rene Buchet ◽  
José Luis Millán ◽  
Pietro Ciancaglini ◽  
...  
Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 249-253
Author(s):  
Marta Bochynska-Czyz ◽  
Patrycja Redkiewicz ◽  
Hanna Kozlowska ◽  
Joanna Matalinska ◽  
Marek Konop ◽  
...  

AbstractThree-dimensional (3D) cell cultures were created with the use of fur keratin associated proteins (F-KAPs) as scaffolds. The procedure of preparation F-KAP involves combinations of chemical activation and enzymatic digestion. The best result in porosity and heterogeneity of F-KAP surface was received during pepsin digestion. The F-KAP had a stable structure, no changes were observed after heat treatment, shaking and washing. The 0.15-0.5 mm fraction had positive effect for formation of 3D scaffolds and cell culturing. Living rat mesenchymal cells on the F-KAP with no abnormal morphology were observed by SEM during 32 days of cell culturing.


Author(s):  
Terry Riss ◽  
O. Joseph Trask

AbstractAlong with the increased use of more physiologically relevant three-dimensional cell culture models comes the responsibility of researchers to validate new assay methods that measure events in structures that are physically larger and more complex compared to monolayers of cells. It should not be assumed that assays designed using monolayers of cells will work for cells cultured as larger three-dimensional masses. The size and barriers for penetration of molecules through the layers of cells result in a different microenvironment for the cells in the outer layer compared to the center of three-dimensional structures. Diffusion rates for nutrients and oxygen may limit metabolic activity which is often measured as a marker for cell viability. For assays that lyse cells, the penetration of reagents to achieve uniform cell lysis must be considered. For live cell fluorescent imaging assays, the diffusion of fluorescent probes and penetration of photons of light for probe excitation and fluorescent emission must be considered. This review will provide an overview of factors to consider when implementing assays to interrogate three dimensional cell culture models.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.


2017 ◽  
Vol 117 (20) ◽  
pp. 12764-12850 ◽  
Author(s):  
Guoyou Huang ◽  
Fei Li ◽  
Xin Zhao ◽  
Yufei Ma ◽  
Yuhui Li ◽  
...  

Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S145
Author(s):  
S. Kress ◽  
D. Egger ◽  
C. Kasper

Sign in / Sign up

Export Citation Format

Share Document