In vivo effects of human recombinant transforming growth factor β on bone turnover in normal mice

2009 ◽  
Vol 5 (10) ◽  
pp. 1087-1096 ◽  
Author(s):  
Christian Marcelli ◽  
A. John Yates ◽  
Gregory R. Mundy
2021 ◽  
Vol 22 (9) ◽  
pp. 4562
Author(s):  
Ching-Feng Wu ◽  
Ching-Yang Wu ◽  
Robin Y.-Y. Chiou ◽  
Wei-Cheng Yang ◽  
Chuen-Fu Lin ◽  
...  

Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.


Immunity ◽  
2009 ◽  
Vol 31 (1) ◽  
pp. 145-157 ◽  
Author(s):  
Roberto Tinoco ◽  
Victor Alcalde ◽  
Yating Yang ◽  
Karsten Sauer ◽  
Elina I. Zuniga

1993 ◽  
Vol 22 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Dike N. Kalu ◽  
Elena Salerno ◽  
Yoshikazu Higami ◽  
Chung Ching Liu ◽  
Fabrizio Ferraro ◽  
...  

1997 ◽  
Vol 185 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Angela M. Hales ◽  
Coral G. Chamberlain ◽  
Christopher R. Murphy ◽  
John W. McAvoy

Cataract, already a major cause of visual impairment and blindness, is likely to become an increasing problem as the world population ages. In a previous study, we showed that transforming growth factor-β (TGFβ) induces rat lenses in culture to develop opacities and other changes that have many features of human subcapsular cataracts. Here we show that estrogen protects against cataract. Lenses from female rats are more resistant to TGFβ-induced cataract than those from males. Furthermore, lenses from ovariectomized females show increased sensitivity to the damaging effects of TGFβ and estrogen replacement in vivo, or exposure to estrogen in vitro, restores resistance. Sex-dependent and estrogen-related differences in susceptibility to cataract formation, consistent with a protective role for estrogen, have been noted in some epidemiological studies. The present study in the rat indicates that estrogen provides protection against cataract by countering the damaging effects of TGFβ. It also adds to an increasing body of evidence that hormone replacement therapy protects postmenopausal women against various diseases.


2010 ◽  
Vol 88 (6) ◽  
pp. 652-660 ◽  
Author(s):  
Panayiota Papadopoulos ◽  
Brice Ongali ◽  
Edith Hamel

Increased levels of transforming growth factor-β1(TGF-β1) induce a vascular pathology that shares similarities with that seen in Alzheimer’s disease, and which possibly contributes to the cognitive decline. In aged transgenic mice that overexpress TGF-β1(TGF mice), we previously found reduced dilatory function and selectively impaired endothelin-1 (ET-1)-induced contraction. Here we studied the effects of chronic treatments with selective ETA(ABT-627) or ETB(A-192621) receptor antagonist on cerebrovascular reactivity, cerebral perfusion, or memory performance. The dilatory deficit of TGF mice was not improved by either treatment, but both ET-1 contraction and basal nitric oxide (NO) production were distinctly altered. Although ABT-627 was devoid of any effect in TGF mice, it virtually abolished the ET-1-induced contraction and NO release in wild-type (WT) littermates. In contrast, A-192621 only acted upon TGF mice with full recovery of ET-1 contraction and baseline NO synthesis. TGF mice, treated or not, had no cognitive deficit in the Morris water maze, nor did ABT-627-treated WT controls despite severely impaired vasoreactivity. These findings confirm that ETAreceptors primarily mediate the ET-1-induced contraction. Further, they suggest that ETBreceptors play a detrimental role in conditions of increased TGF-β1and that vascular dysfunction does not inevitably lead to cognitive deficit.


2009 ◽  
Vol 53 (11) ◽  
pp. 4694-4701 ◽  
Author(s):  
Mariana C. Waghabi ◽  
Elen M. de Souza ◽  
Gabriel M. de Oliveira ◽  
Michelle Keramidas ◽  
Jean-Jacques Feige ◽  
...  

ABSTRACT Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor β (TGF-β) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. This prompted us to evaluate the therapeutic action of an inhibitor of TGF-β signaling (SB-431542) administered during the acute phase of experimental Chagas' disease. Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically for the following 30 days. SB-431542 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that SB-431542 treatment was effective in protecting the cardiac conduction system. By 14 day postinfection, enzymatic biomarkers of tissue damage indicated that muscle injury was decreased by SB-431542 treatment, with significantly lower blood levels of aspartate aminotransferase and creatine kinase. In conclusion, inhibition of TGF-β signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic agent for acute and chronic Chagas' disease that warrants further clinical exploration.


Sign in / Sign up

Export Citation Format

Share Document