Decreased in vivo and in vitro colony stimulating activity responses to bacterial lipopolysaccharide in C3H/HeJ mice

1977 ◽  
Vol 92 (2) ◽  
pp. 303-307 ◽  
Author(s):  
Momtchilo Russo ◽  
John D. Lutton
2002 ◽  
Vol 80 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Maria O Pulina ◽  
Elena T Zakharova ◽  
Alexei V Sokolov ◽  
Mikhail M Shavlovski ◽  
Mikhail G Bass ◽  
...  

We have previously shown that iron-containing human lactoferrin (LF) purified from breast milk is able to form both in vitro and in vivo a complex with ceruloplasmin (CP), the copper-containing protein of human plasma. Here we present evidence that the CP–LF complex is dissociated by high concentrations of NaCl, CaCl2, or EDTA, or by decreasing the pH to 4.7. In addition, DNA, bacterial lipopolysaccharide, and heparin can displace CP from its complex with LF. Antibodies to either of the two proteins also cause dissociation of the complex.Key words: lactoferrin, ceruloplasmin, ferroxidase.


Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1740-1742 ◽  
Author(s):  
Ingrid Pollet ◽  
Christy J. Opina ◽  
Carla Zimmerman ◽  
Kevin G. Leong ◽  
Fred Wong ◽  
...  

AbstractThe intracellular pathways by which inflammatory mediators transmit their angiogenic signals is not well studied. The effects of a potent inflammatory mediator, bacterial lipopolysaccharide (LPS), are transmitted through Toll-like receptors (TLRs). A major, although not exclusive, LPS/TLR intracellular signaling pathway is routed through TNF (tumor necrosis factor) receptor associated factor 6 (TRAF6). In this report we demonstrate that LPS directly stimulates endothelial sprouting in vitro. By blocking TRAF6 activity using retroviral expression of a dominant-negative TRAF6 in endothelial cells, we show that TRAF6 is absolutely required for the LPS-initiated angiogenic response in vitro and in vivo. Inhibition of either c-Jun N-terminal kinase (JNK) activity or nuclear factor κB (NF-κB) activity, downstream of TRAF6, is sufficient to inhibit LPS-induced endothelial sprouting. In contrast, only inhibition of NF-κB, but not JNK, activity blocks basic fibroblast growth factor (bFGF)–induced angiogenesis. Our findings thus demonstrate a direct endothelial-stimulatory role of LPS in initiating angiogenesis through activation of TRAF6-dependent signaling pathways.


2007 ◽  
Vol 30 (6) ◽  
pp. 250 ◽  
Author(s):  
Jose Arellano Galindo ◽  
Maria Guadalupe Rodriquez Angeles ◽  
Norma Valazquez Guadarrama ◽  
Enrique Santos Esteban ◽  
Silvia Giono Cerezo

Purpose: To evaluate the hemolysin effect by ileal loop model produced by Vibrio cholerae O1 strains, compared with the cellular lysis or cytotoxic activity (CA) observed in cell culture. Method: We studied nine V. cholerae O1 strains, obtained during the Mexican outbreak of cholera (1990-1993), which had CA in Vero and CHO cells. Hemolysin was monitored with the hemolysis test. Titers of CA were calculated by CD50, and the association between CA and cholera toxin (CT) production was discarded by means of neutralization tests using an anti-CT polyclonal antibody. The CT production was measured with ELISA test. The LAL assay was performed in order to study relationships between the CA and bacterial lipopolysaccharide. Strains with CA were evaluated in rabbit and rat ileal loop models; hemorrhagic fluid was also measured. Tissues from ileal loop were included in paraffin to detect intestinal epithelial damage. Results: The hemolysin CA was not neutralized with the anti-CT polyclonal antibody. However, the associated factor of CA was heat labile. CA in cell cultures was not related to the bacterial lipopolysaccharide. The ileal loop test exhibited the presence of hemorrhagic tissue with inflammation. Conclusion: The V. cholerae O1 strains isolated were able to secrete hemolysin which, in turn, caused CA in cell cultures and produced the hemorrhagic and inflammatory effects observed in the ileal loop of rabbit and rat models.


1976 ◽  
Vol 143 (1) ◽  
pp. 143-150 ◽  
Author(s):  
B J Skidmore ◽  
J M Chiller ◽  
W O Weigle ◽  
R Riblet ◽  
J Watson

The mechanism was investigated underlying the activity of bacterial lipopolysaccharide (LPS) as an adjuvant of antibody formation as assessed by its capacity to modulate the induction of tolerance in mice to the antigen human Ig G (HGG) into a state of immunity to HGG. The adjuvant activity of LPS was found to be closely correlated with its ability to function as a B-cell mitogen. This correlation was revealed by an analysis of the genetic control of the mitogenic and adjuvant properties of LPS utilizing the refractory state inherent in the C3H/HeJ mouse strain to these activities of LPS. Thus, mice that were the progeny of a backcross between the nonresponder C3H/JeJ parent and the responder (C3H/HeJ X CWB) F1 hybrid were individually typed for responsiveness to LPS, as an adjuvant and as a B-cell mitogen. It was found that LPS interfered with tolerance induction to HGG in vivo only in those backcross progeny whose spleen cells were also capable of responding mitogenically to LPS in vitro, demonstrating that the adjuvant and B-cell mitogenic properties of LPS are genetically linked. In contrast, these properties were observed to segregate independently from either H-2 or heavy chain allotype loci, and were not sex linked. These results are compatible with the concepts that, in this system, (a) the cellular site of action of LPS as an adjuvant is confined to B cells, and (b) the subcellular mode of action of LPS as an adjuvant may involve the delivery of a "signal" to B cells which is a stimulus for mitogenesis.


1978 ◽  
Vol 148 (4) ◽  
pp. 1052-1067 ◽  
Author(s):  
H E Broxmeyer ◽  
A Smithyman ◽  
R R Eger ◽  
P A Meyers ◽  
M de Sousa

Lactoferrin (LF), the iron-binding protein present in the specific granules of mature granulocytes has been identified as colony inhibitory factor (CIF) which suppresses granulocyte--macrophage colony stimulating activity (CSA) production by monocytes and macrophages in vitro and rebound granulopoiesis in vivo. Separation of LF and CIF by isoelectric focusing confirmed that the regions of inhibitory activity corresponded in both to a pH of congruent to 6.5. In addition, the purified immunoglobulin fraction of rabbit anti-human LF antiserum, but not rabbit anti-transferrin (TF), inactivated the capacity of LF and CIF to inhibit CSA production, an effect blocked by prior incubation of anti-LF with neutralizing concentrations of LF. Suppression of CSA production correlated with the iron-saturation of LF; APO-LF (depleted of iron) was only active concentrations greater than 10(-7) M, native LF (8% iron saturated) was active at 10(-15) M, and fully iron-saturated LF inhibited at 10(-17) M. Suppression of CSA production occurred within a 1/2-h preincubation period with human blood monocytes but was reversed by bacterial lipopolysaccharide (LPS). This reversal was dependent on the relative concentrations of LF to LPS. Serum TF, a biochemically similar iron-binding protein which is antigenically distinct from LF, was only minimally active at concentrations greater than 10(-6) M. LF did not inhibit exogenously stimulated human granylocyte and macrophage colony-forming cells or erythropoietin-dependent human or murine erythroid colony- or erythroid burst-forming cells. Microgram quantities of LF acted in vivo to inhibit rebound granulopoiesis and CSA production in CD1 and C57Bl/6 mice pretreated with cyclophosphamide. These results strongly implicate LF as a physiological regulator of granulopoiesis.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 685-688
Author(s):  
K Motoyoshi ◽  
F Takaku ◽  
Y Miura

Eight adult patients suffering from leukocytopenia have been injected by droplet intravenous infusions with partially purified human urinary colony-stimulating factor (CSFHU), which stimulated human monocytes to produce colony-stimulating activity (CSA) in vitro. Three of eight patients were injected with low-dose CSFHU and five with high-dose CSFHU. The infusion of high-dose CSFHU led to a slightly earlier rise in absolute neutrophil counts and a higher CSA level in the serum, as compared to noninjected leukocytopenic patients. There was little toxicity associated with it. Human urinary colony-stimulating factor used in the clinical studies did not have any CSA in vitro in the presence or absence of the patients' sera. These data may suggest that the intravenous infusion of CSFHU increased the serum CSA level, probably through the stimulation of CSA-producing cells in vivo.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1340-1347 ◽  
Author(s):  
V Pistoia ◽  
R Ghio ◽  
S Roncella ◽  
F Cozzolino ◽  
S Zupo ◽  
...  

Abstract Normal human B cells were purified from peripheral blood or tonsils and tested for their ability to release colony-stimulating activity (CSA) in short-term cultures. The target cells used in the CSA assays were from peripheral blood or bone marrow. Unstimulated B cells produced CSA in amounts similar to those present in the GCT-conditioned medium used as a positive control. The B cell-derived CSA predominantly promoted the growth of colonies that contained macrophages alone or macrophages and granulocytes. CSA eluted in a single peak from a G-75 Sephadex column with an approximate molecular weight (mw) of 65 to 70 kilodaltons (kd). Fractionation of tonsil B lymphocytes on Percoll density gradients showed that large B cells, probably already activated in vivo, were the main source of CSA. By contrast, small, resting B cells recovered from a different fraction of the Percoll gradient released minimum amounts or no CSA. However, these B cells became CSA producers following stimulation with Staphylococcus aureus Cowan (SAC) in vitro. B cells purified from the peripheral blood of nine out of 12 patients with B-cell chronic lymphocytic leukemia (B-CLL) also released CSA in vitro in the absence of stimuli. These findings suggest that by releasing CSA, B cells may have a role in the regulation of hematopoiesis and in the control of the inflammatory process.


1988 ◽  
Vol 45 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Timothy H. Pohlman ◽  
Robert K. Winn ◽  
Karleen S. Callahan ◽  
Ronald V. Maier ◽  
John M. Harlan

Sign in / Sign up

Export Citation Format

Share Document