Uric acid induced epithelial−mesenchymal transition of renal tubular cells through PI3K/p‐Akt signaling pathway

2019 ◽  
Vol 234 (9) ◽  
pp. 15563-15569 ◽  
Author(s):  
Xiao‐Yan Xiong ◽  
Lin Bai ◽  
Shou‐Jun Bai ◽  
Ya‐Kun Wang ◽  
Tingting Ji
Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Weiqing Han ◽  
Jun-Pin Hu ◽  
Pin-Lan Li ◽  
Ningjun Li

Transforming growth factor beta 1 (TGFβ1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGFβ1 signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing proteins (PHDs) are involved in TGFβ1-induced EMT in renal tubular cells. Our results showed that TGFβ1 treatment for 48 h stimulated EMT in cultured renal tubular cells as indicated by the decrease in epithelial marker P-cadherin from 1.0 ± 0.02 to 0.40 ± 0.05 ( P < 0.05), and the increase in mesenchymal markers α-smooth muscle actin (2.14 ± 0.32 fold, P < 0.05) and fibroblast-specific protein (2.0 ± 0.17 fold, P < 0.05) as shown in Western blot assay. Meanwhile, TGFβ1 time-dependently increased HIF-1α, which reached its maximum value (2.36 ± 0.2 fold, P < 0.05) at 24 h, and that HIF-1α siRNA significantly inhibited TGFβ1-induced EMT, suggesting that HIF-1α mediated TGFβ1 induced-EMT. Real-time PCR showed that PHD1 and PHD2, rather than PHD3, could be detected, with PHD2 as the predominant form of PHDs (PHD1 : PHD2 = 0.21:1.0). Importantly, TGFβ1 time-dependently decreased PHD2 mRNA and protein level, which reached their maximum value from 1.0 ± 0.15 to 0.45 ± 0.08 ( P < 0.05) for mRNA at 16 h and from 1.0 ± 0.08 to 0.26 ± 0.08 ( P < 0.05) for protein at 24 h, respectively. In contrast, TGFβ1 had no effect on PHD1 mRNA and protein levels. Furthermore, over-expression of PHD2 transgene almost fully prevented TGFβ1-induced HIF-1α accumulation and EMT marker changes, indicating that PHD2 is involved in TGFβ1-induced EMT. Finally, Smad2 inhibitor SB431542 prevented TGFβ1-induced PHD2 decrease, suggesting that Smad2 may mediate TGFβ1-induced EMT through PHD2/HIF-1α. It is concluded that TGFβ1 decreased PHD2 expression via a Smad2-dependent signaling pathway, thereby leading to HIF-1α accumulation and EMT in renal tubular cells. The present study suggests that PHD2/HIF-1α is a novel signaling pathway mediating the fibrogenic effect of TGFβ1 and that manipulating PHD2/HIF-1α pathway may be used as a therapeutic strategy in chronic kidney diseases. (support: NIH grant HL89563 and HL106042)


2011 ◽  
Vol 658 (2-3) ◽  
pp. 213-218 ◽  
Author(s):  
Yen-Cheng Chen ◽  
Cheng-Hsien Chen ◽  
Yung-Ho Hsu ◽  
Tso-Hsiao Chen ◽  
Yuh-Mou Sue ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Dongqing Zha ◽  
Saiqun Wu ◽  
Ping Gao ◽  
Xiaoyan Wu

We examined whether and how uric acid induces epithelial to mesenchymal transition (EMT) in renal tubular cells, along with the mechanism by which telmisartan acts on uric acid-induced renal injury. Rat renal proximal tubular epithelial cells (NRK-52E) were exposed to various concentrations of uric acid in the presence or absence of telmisartan. Treatment with uric acid increased the expression of α-SMA, decreased the expression of E-cadherin, and promoted EMT in NRK-52E cells. Uric acid treatment also led to increased endothelin-1 (ET-1) production, activation of extracellular-regulated protein kinase 1/2 (ERK1/2), and the upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Use of ET-1 receptor inhibitor (BQ123 or BQ788) could inhibit uric acid-induced EMT in NRK-52E cells. Pretreatment with the ERK inhibitor (U0126 or PD98059) suppressed the release of ET-1 and EMT induced by uric acid. Additionally, pretreatment with a traditional antioxidant (diphenylene iodonium or apocynin) inhibited the activation of ERK1/2, release of ET-1, and uric acid-induced EMT in NRK-52E cells. These findings suggested that uric acid-induced EMT in renal tubular epithelial cells occurs through NADPH oxidase-mediated ERK1/2 activation and the subsequent release of ET-1. Furthermore, telmisartan (102 nmol/L to 104 nmol/L) inhibited the expression of NOX4, intracellular reactive oxygen species (ROS), activation of ERK1/2, and the release of ET-1 in a dose-dependent manner, thereby preventing uric acid-induced EMT in NRK-52E. In conclusion, telmisartan could ameliorate uric acid-induced EMT in NRK-52E cells likely through inhibition of the NADPH oxidase/ERK1/2/ET-1 pathway.


2017 ◽  
Vol 46 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Huifang Liu ◽  
Jiachuan Xiong ◽  
Ting He ◽  
Tangli Xiao ◽  
Yan Li ◽  
...  

Background: Hyperuricemia is an independent risk factor for causing chronic kidney disease and contributes to kidney fibrosis. After urate crystals get deposited in the kidney, they can cause hyperuricemia nephropathy, leading to glomerular hypertrophy and renal tubular interstitial fibrosis. Recent data showed that uric acid (UA) could induce epithelial mesenchymal transition (EMT) of renal tubular cells, in which NRLP3 inflammatory pathway was involved. However, whether TLR4/NF-κB signaling pathway is also involved in EMT of renal tubular cells induced by UA is not clear. Methods: Human renal tubular epithelial cells (HK-2) were directly treated with UA and the phenotypic transition was detected by morphological changes and the molecular markers of EMT. The activation of the TLR4/NF-κB signaling pathway induced by UA was measured by Western blot and its involvement was further confirmed by the inhibition of NF-κB activation or knockdown of toll like receptor 4 (TLR4) expression. Results: UA induced obvious morphological changes of HK-2 cell, accompanied with altered molecular markers of EMT including fibronectin, α-SMA and E-cadherin. In addition, UA significantly upregulated the gene expression of interleukin-1β and tumor necrosis factor-α in a time- and dose-dependent manner. Furthermore, UA significantly activated the TLR4/NF-κB signaling pathway in HK-2 cells, while the inhibition of the TLR4 expression by siRNA and NF-κB activation by PDTC significantly attenuated EMT induced by UA in HK-2 cells. Conclusions: UA can induce EMT in renal tubular epithelial cells by the activation of the TLR4/NF-κB signaling pathway, and the targeted intervention of the TLR4/NF-κB signaling pathway might effectively inhibit UA-induced renal interstitial fibrosis mediated by EMT.


Sign in / Sign up

Export Citation Format

Share Document