Hydrogen sulfide restores sevoflurane postconditioning mediated cardioprotection in diabetic rats: Role of SIRT1/Nrf2 signaling‐modulated mitochondrial dysfunction and oxidative stress

Author(s):  
Jing Zhang ◽  
Xia Cai ◽  
Qin Zhang ◽  
Xiaozhong Li ◽  
Siyuan Li ◽  
...  
Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64208-64214 ◽  
Author(s):  
Shenglan Yang ◽  
Danfang Deng ◽  
Yingying Luo ◽  
Yanran Wu ◽  
Rui Zhu ◽  
...  

In this study, the alleviating role of hydrogen sulfide (H2S) was investigated in a Post-Infectious Irritable Bowel Syndrome (PI-IBS) murine model and Caco-2 cells.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e53147 ◽  
Author(s):  
Ya-Dan Wen ◽  
Hong Wang ◽  
Sok-Hong Kho ◽  
Suguro Rinkiko ◽  
Xiong Sheng ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
C. Simoncini ◽  
D. Orsucci ◽  
E. Caldarazzo Ienco ◽  
G. Siciliano ◽  
U. Bonuccelli ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This neurodegenerative disorder is clinically characterized by impairment of cognitive functions and changes in behaviour and personality. The pathogenesis of AD is still unclear. Recent evidence supports some role of mitochondria dysfunction and oxidative stress in the development of the neurodegenerative process. In this review, we discuss the role of mitochondrial dysfunction in AD, focusing on the mechanisms that lead to mitochondrial impairment, oxidative stress, and neurodegeneration, a “vicious circle” that ends in dementia.


Author(s):  
Linlin Zhang ◽  
Aurelio Reyes ◽  
Xiangdong Wang

Abstract: The discovery of charged molecules being able to cross the mitochondrial membrane has prompted many scholars to exploit this idea to find a way of preventing or slowing down aging. In this paper, we will focus on mitochondriatargeted antioxidants, which are cationic derivatives of plastoquinone, and in particular on the mitochondria-targeted antioxidant therapy of neurodegenerative diseases. It is well known that the accumulation of amyloid-β peptide (Aβ) in mitochondria and its related mitochondrial dysfunction are critical signatures of Alzheimer’ s disease (AD). In another neurodegenerative disease, Parkinson’s disease (PD), the loss of dopaminergic neurons in the substantia nigra and the production of Lewy bodies are among their pathological features. Pathogenesis of Parkinson’s disease and Alzheimer’s disease has been frequently linked to mitochondrial dysfunction and oxidative stress. Recent studies show that MitoQ, a mitochondria-targeted antioxidant, may possess therapeutic potential for Aβ-related and oxidative stress-associated neurodegenerative diseases, especially AD. Although MitoQ has been developed to the stage of clinical trials in PD, its true clinical effect still need further verification. This review aims to discuss the role of mitochondrial pathology in neurodegenerative diseases, as well as the recent development of mitochondrial targeted antioxidants as a potential treatment for these diseases by removing excess oxygen free radicals and inhibiting lipid peroxidation in order to improve mitochondrial function.  


2017 ◽  
Vol 64 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Zimiao Chen ◽  
Hongwei Sun ◽  
Jian Wang ◽  
Liansong Ni ◽  
Xuejiang Gu ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Clayton Torres Aguiar ◽  
Anália Barbosa Almeida ◽  
Paulo Victor Pontes Araújo ◽  
Rita Neuma Dantas Cavalcante de Abreu ◽  
Edna Maria Camelo Chaves ◽  
...  

Backgrounds. The production of free radicals has a role in the regulation of biological function, cellular damage, and the pathogenesis of central nervous system conditions. Epilepsy is a highly prevalent serious brain disorder, and oxidative stress is regarded as a possible mechanism involved in epileptogenesis. Experimental studies suggest that oxidative stress is a contributing factor to the onset and evolution of epilepsy.Objective. A review was conducted to investigate the link between oxidative stress and seizures, and oxidative stress and age as risk factors for epilepsy. The role of oxidative stress in seizure induction and propagation is also discussed.Results/Conclusions. Oxidative stress and mitochondrial dysfunction are involved in neuronal death and seizures. There is evidence that suggests that antioxidant therapy may reduce lesions induced by oxidative free radicals in some animal seizure models. Studies have demonstrated that mitochondrial dysfunction is associated with chronic oxidative stress and may have an essential role in the epileptogenesis process; however, few studies have shown an established link between oxidative stress, seizures, and age.


Sign in / Sign up

Export Citation Format

Share Document