scholarly journals Neddylation of Coro1a determines the fate of multivesicular bodies and biogenesis of extracellular vesicles

2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Xuefeng Fei ◽  
Zhijie Li ◽  
Diya Yang ◽  
Xianghui Kong ◽  
Xinliang Lu ◽  
...  
2021 ◽  
Vol 4 (8) ◽  
pp. e202101055
Author(s):  
Francesc X Guix ◽  
Ana Marrero Capitán ◽  
Álvaro Casadomé-Perales ◽  
Irene Palomares-Pérez ◽  
Inés López del Castillo ◽  
...  

As neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms. We show in this work that ageing neurons in culture show large multivesicular bodies (MVBs) filled with intralumenal vesicles (ILVs) and secrete more small extracellular vesicles than younger neurons. We also show that the high number of ILVs is the consequence of the accumulation of cholesterol in MVBs, which in turn is due to decreased levels of the cholesterol extruding protein NPC1. NPC1 down-regulation is the consequence of a combination of upregulation of the NPC1 repressor microRNA 33, and increased degradation, due to Akt-mTOR targeting of NPC1 to the phagosome. Although releasing more exosomes can be beneficial to old neurons, other cells, neighbouring and distant, can be negatively affected by the waste material they contain.


2021 ◽  
Author(s):  
Carolina Camelo ◽  
Anna Koerte ◽  
Thea Jacobs ◽  
Peter Robin Hiesinger ◽  
Stefan Luschnig

Fusion of endothelial or epithelial tubes is essential for the development of organs like the vertebrate vasculature or the insect tracheal system, but the mechanisms underlying the formation of tubular connections (anastomoses) are not well understood. Tracheal tube fusion in Drosophila is mediated by tip cells that transform into lumenized toroids to connect adjacent tubes. This process depends on the Munc13-4 orthologue Staccato (Stac), which localizes to tip-cell-specific lysosome-related organelles (LROs). We show that tracheal LROs display features of multivesicular bodies (MVBs) and that the tracheal lumen contains membranous extracellular vesicles (EVs), a subset of which carries Stac/Munc13-4 and is associated with tracheal anastomosis sites. The presence of LROs and luminal Stac-EVs depends on the tip-cell-specific GTPase Arl3, suggesting that Stac-EVs derive from fusion of MVBs with the luminal membrane in tip cells during anastomosis formation. The GTPases Rab27 and Rab35 cooperate downstream of Arl3 to promote Stac-MVB formation and tube fusion. We propose that Stac-MVBs act as membrane reservoirs that facilitate lumen fusion in tip cells, in a process regulated by Arl3, Rab27, Rab35, and Stac/Munc13-4.


2022 ◽  
Author(s):  
Carolina Camelo ◽  
Anna Körte ◽  
Thea Jacobs ◽  
Stefan Luschnig

Extracellular vesicles (EVs) comprise diverse types of cell-released membranous structures that are thought to play important roles in intercellular communication. While the formation and functions of EVs have been investigated extensively in cultured cells, studies of EVs in vivo have remained scarce. We report here that EVs are present in the developing lumen of tracheal tubes in Drosophila embryos. We defined two distinct EV subpopulations, one of which contains the Munc13-4 homologue Staccato (Stac) and is spatially and temporally associated with tracheal tube fusion (anastomosis) events. The formation of Stac-positive luminal EVs depends on the tracheal tip-cell-specific GTPase Arl3, which is also required for the formation of Stac-positive multivesicular bodies, suggesting that Stac-EVs derive from fusion of Stac-MVBs with the luminal membrane in tip cells during anastomosis formation. The GTPases Rab27 and Rab35 cooperate downstream of Arl3 to promote Stac-MVB formation and tube fusion. We propose that Stac-MVBs act as membrane reservoirs that facilitate tracheal lumen fusion in a process regulated by Arl3, Rab27, Rab35, and Stac/Munc13-4.


2020 ◽  
Vol 2 (1) ◽  
pp. 48-53
Author(s):  
Julia Christina Gross ◽  
Sabnam Parbin

The primary role of endosomal system is endocytic trafficking – to sort out internalized macromolecules and proteins to their destined cellular localizations. Incorporation of sorted cargos into multivesicular bodies (MVBs) confers specificities and determines their fates. This central point of the endosomal trafficking separates MVBs in two directions. The MVB populations fuse either with lysosomes to initiate autophagy or with plasma membrane to release small extracellular vesicles. Factors contributing to the selection of cargo and direction of trafficking incorporate the cells’ metabolic status and stress level. In this review, we discuss the molecular cues responsible for differential cargo sorting into MVBs and trafficking directions of MVBs in the endosomal network. Keywords: Exosomes; degradative MVB; secretory MVB; physiological stress; endocytic machinery; lysosome


2020 ◽  
Vol 35 (2) ◽  
pp. 3-19 ◽  
Author(s):  
Shuli Tang ◽  
Siming Yu ◽  
Jianan Cheng ◽  
Yanqiao Zhang ◽  
Xiaoyi Huang

Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are nanosized structures that are secreted by various cells and act as important mediators in intercellular communication. Recent studies have shown that exosomes carrying bioactive molecules are generated from multivesicular bodies and are present in various body fluids. mRNAs and microRNAs (miRNAs) are encapsulated in exosomes and have been found to be involved in multiple pathophysiological processes. Here, we provide a review of tumor-associated exosomal mRNAs and miRNAs and their roles in metastasis and drug resistance. In particular, we emphasize their clinical application potential as diagnostic and prognostic biomarkers of cancer and in cancer therapy.


2021 ◽  
Vol 11 (16) ◽  
pp. 7520
Author(s):  
Silvia Fischer ◽  
Elisabeth Deindl

Extracellular vesicles (EVs) are important players in the communication between different kinds of cells by delivering their content, consisting of different types of RNA, proteins, bioactive lipids, or signaling nucleotides, into their target cells. Several types of EVs are distinguished: (1) exosomes with sizes from 30 to 150 nm originate from the endosomal pathway and form intracellular multivesicular bodies (MVBs), which fuse to the plasma membrane before their secretion. (2) EVs with sizes ranging from 100 to 1000 nm in diameter are formed during cell surface budding. (3) Apoptotic bodies with diameters from 500 to 2000 nm are released from blebbing of the cell membrane of apoptotic cells. It is well established that various RNA molecules such as coding RNAs and noncoding RNAs (long noncoding RNAs, microRNAs, circular RNAs, and rRNAs) are present in different amounts in EVs depending on the type and origin of EV. Here we will give an overview of methods to isolate different types of EVs and to quantify and characterize different RNA species.


2018 ◽  
Vol 217 (8) ◽  
pp. 2891-2910 ◽  
Author(s):  
Paul W. Kriebel ◽  
Ritankar Majumdar ◽  
Lisa M. Jenkins ◽  
Hiroshi Senoo ◽  
Weiye Wang ◽  
...  

Chemotactic signals are relayed to neighboring cells through the secretion of additional chemoattractants. We previously showed in Dictyostelium discoideum that the adenylyl cyclase A, which synthesizes the chemoattractant cyclic adenosine monophosphate (cAMP), is present in the intraluminal vesicles of multivesicular bodies (MVBs) that coalesce at the back of cells. Using ultrastructural reconstructions, we now show that ACA-containing MVBs release their contents to attract neighboring cells. We show that the released vesicles are capable of directing migration and streaming and are central to chemotactic signal relay. We demonstrate that the released vesicles not only contain cAMP but also can actively synthesize and release cAMP to promote chemotaxis. Through proteomic, pharmacological, and genetic approaches, we determined that the vesicular cAMP is released via the ABCC8 transporter. Together, our findings show that extracellular vesicles released by D. discoideum cells are functional entities that mediate signal relay during chemotaxis and streaming.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Thomas Wurdinger ◽  
NaTosha N. Gatson ◽  
Leonora Balaj ◽  
Balveen Kaur ◽  
Xandra O. Breakefield ◽  
...  

Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1974
Author(s):  
Sherin Saheera ◽  
Ajay Godwin Potnuri ◽  
Prasanna Krishnamurthy

Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising of exosomes, apoptotic bodies, and microvesicles. Of the extracellular vesicles, exosomes are the most widely sorted and extensively explored for their contents and function. The size of the nanovesicular structures (exosomes) range from 30 to 140 nm and are present in various biological fluids such as saliva, plasma, urine etc. These cargo-laden extracellular vesicles arise from endosome-derived multivesicular bodies and are known to carry proteins and nucleic acids. Exosomes are involved in multiple physiological and pathological processes, including cellular senescence. Exosomes mediate signaling crosstalk and play a critical role in cell–cell communications. Exosomes have evolved as potential biomarkers for aging-related diseases. Aging, a physiological process, involves a progressive decline of function of organs with a loss of homeostasis and increasing probability of illness and death. The review focuses on the classic view of exosome biogenesis, biology, and age-associated changes. Owing to their ability to transport biological information among cells, the review also discusses the interplay of senescent cell-derived exosomes with the aging process, including the susceptibility of the aging population to COVID-19 infections.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Byung Rho Lee ◽  
Bethany J. Sanstrum ◽  
Yutao Liu ◽  
Sang-Ho Kwon

AbstractExosomes, vehicles for intercellular communication, are formed intracellularly within multivesicular bodies (MVBs) and are released upon fusion with the plasma membrane. For their biogenesis, proper cargo loading to exosomes and vesicle traffic for extracellular release are required. Previously we showed that the L-type lectin, LMAN2, limits trans-Golgi Network (TGN)-to-endosomes traffic of GPRC5B, an exosome cargo protein, for exosome release. Here, we identified that the protein deacetylase sirtuin 2 (SIRT2) as a novel interactor of LMAN2. Loss of SIRT2 expression resulted in exosomal release of LMAN2, a Golgi resident protein, along with increased exosomal release of GPRC5B. Furthermore, knockout of SIRT2 increased total number of extracellular vesicles (EVs), indicating increased MVB-to-EV flux. While knockout of SIRT1 increased EV release with enlarged late endolysosome, knockout of SIRT2 did not exhibit endolysosome enlargement for increased EV release. Taken together, our study suggests that SIRT2 regulates cargo loading to MVBs and MVB-to-EV flux through a mechanism distinct from that of SIRT1.


Sign in / Sign up

Export Citation Format

Share Document