High temperature and high pressure stable gluing of press-fit connectors for fused silica and metal capillary tubing

1992 ◽  
Vol 15 (2) ◽  
pp. 131-133 ◽  
Author(s):  
Agneta Bemgård ◽  
Conny Östman
1997 ◽  
Vol 119 (1) ◽  
pp. 74-78 ◽  
Author(s):  
J. Karni ◽  
A. Kribus ◽  
P. Doron ◽  
R. Rubin ◽  
A. Fiterman ◽  
...  

A solar central receiver absorbs concentrated sunlight and transfers its energy to a working medium (gas, liquid or solid particles), either in a thermal or a thermochemical process. Various attractive high-performance applications require the solar receiver to supply the working fluid at high temperature (900–1500°C) and high pressure (10–35 bar). As the inner receiver temperature may be well over 1000°C, sunlight concentration at its aperture must be high (4–8 MW/m2), to minimize aperture size and reradiation losses. The Directly Irradiated Annular Pressurized Receiver (DIAPR) is a volumetric (directly irradiated), windowed cavity receiver that operates at aperture flux of up to 10 MW/m2. It is capable of supplying hot gas at a pressure of 10–30 bar and exit temperature of up to 1300°C. The three main innovative components of this receiver are: • a Porcupine absorber, made of a high-temperature ceramic (e.g., alumina); • a Frustum-Like High-Pressure (FLHIP) window, made of fused silica; • a two-stage secondary concentrator followed by the KohinOr light extractor. This paper presents the design principles of the DIAPR, its structure and main components, and examples of experimental and computational results.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


Alloy Digest ◽  
2019 ◽  
Vol 68 (11) ◽  

Abstract YSS YXM4 is a cobalt-alloyed molybdenum high-speed tool steel with resistance to abrasion, seizure, and deformation under high pressure. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance. Filing Code: TS-780. Producer or source: Hitachi Metals America, Ltd.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Sign in / Sign up

Export Citation Format

Share Document