scholarly journals RegCM4 in climate simulation over CORDEX‐MENA /Arab domain: selection of suitable domain, convection and land‐surface schemes

2015 ◽  
Vol 36 (1) ◽  
pp. 236-251 ◽  
Author(s):  
Mansour Almazroui
Author(s):  
Marija Šperac ◽  
Dino Obradović

The urbanization process significantly reduced the permeability of land surfaces, which affected the changes of runoff characteristics and the relations in the hydrological cycle. In urban environments, the relationships within the hydrological cycle have changed in quantity, in particular: precipitation, air temperature, evaporation, and infiltration. By applying the green infrastructure (GI) to urban environments is beneficial for the water resources and the social community. GI has an effect on the improvement of ecological, economic, and social conditions. Using GI into urban areas increases the permeability of land surfaces, whereby decreasing surface runoff, and thus the frequency of urban floods. It also has a significant influence on the regulation of air quality, water purification, climate change impact, and the changes in the appearance of the urban environment. When planning and designing the GI, it is necessary to identify the type of GI and determine the size and location of the selected GI. Since each urban environment has its own characteristics, it is necessary to analyze them before deciding on the GI. The paper analyzed meteorological parameters (precipitation, air temperature, insolation, air humidity) affecting the selection of GI types, using the specific example of an urban environment – the City of Osijek, Croatia. Significant parameters when designing GI are operation and maintenance These parameters directly affect the efficiency of GI. The proper selection of GI and its location results in maximum gains: the reduction of land surface drainage - drainage of the sewage system, purification and retention of precipitation at the place of production, the improvement of air quality, and the improvement of living conditions in urban environments


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Hari Prasad Dasari ◽  
Rui Salgado ◽  
Joao Perdigao ◽  
Venkata Srinivas Challa

In this study regional climate simulations of Europe over the 60-year period (1950–2010) made using a 25 km resolution WRF model with NCEP 2.5 degree analysis for initial/boundary conditions are presented for air temperature and extreme events of heat and cold waves. The E-OBS 25 km analysis data sets are used for model validation. Results suggest that WRF could simulate the temperature trends (mean, maximum, minimum, seasonal maximum, and minimum) over most parts of Europe except over Iberian Peninsula, Mediterranean, and coastal regions. Model could simulate the slight fall of temperatures from 1950 to 1970 as well as steady rise in temperatures from 1970 to 2010 over Europe. Simulations show occurrence of about 80% of the total heat waves in the period 1970–2010 with maximum number of heat/cold wave episodes over Eastern and Central Europe in good agreement with observations. Relatively poor correlations and high bias are found for heat/cold wave episodes over the complex topographic areas of Iberia and Mediterranean regions where land surface processes play important role in local climate. The poor simulation of temperatures over the above regions could be due to deficiencies in representation of topography and surface physics which need further sensitivity studies.


2020 ◽  
Author(s):  
Omar Müller ◽  
Pier Luigi Vidale ◽  
Patrick McGuire ◽  
Benoît Vannière ◽  
Reinhard Schiemann ◽  
...  

<p>Previous studies showed that high resolution GCMs overestimate land precipitation when compared against gridded observations or reanalysis (Demory et al. 2014, Vannière et al. 2019). In particular, grid point models (eg. HadGEM3) show a significant increase of precipitation on regions dominated by complex orography, where the scarcity of gauge stations increase the uncertainty of gridded observations. The goal of this work is to assess the effect of such differences in precipitation on river discharge, considering it as an integrator of the water balance at catchment scale. A set of JULES and CLM simulations have been conducted turning rivers on with Total Runoff Integrating Pathways (TRIP) and the River Transport Model (RTM) respectively. The simulations form three ensembles for each land surface model (LSM) which main difference is given by the forcing dataset. The forcings are WFDEI (reanalysis), LR (~1° resolution in meteorological data from GCMs) and HR (~0.25° resolution in meteorological data from GCMs). These ensembles are evaluated in a set of 280 catchments distributed around the world.</p><p>In terms of correlation between simulated and observed river discharge observations, the results show that LSMs forced by reanalysis have higher performance than LSMs forced by GCMs as expected. In terms of biases, the river discharge is underestimated in eight out of eleven major basins when LSMs are forced by reanalysis. On those basins, the extra precipitation estimated by GCMs help to simulate an amount of river discharge closer to observations (Eg. Yenisey and Lena). Moreover, 37 small basins with a strong component of orographic precipitation over the Andes, the Rocky Mountains, the Alps and in the Maritime Continent were evaluated. In most cases HR offers notably better results than LR and WFDEI, suggesting that high resolution models produce orographic precipitation in the correct place and time.</p><p>In future works offline TRIP simulations will be carried out directly forced by runoff and subsurface runoff from GCMs. It will allow to discard errors in evapotranspiration produced by JULES or CLM when they are used to simulate river discharge. This work is part of the European Process-based climate sIMulation: AdVances in high resolution modelling and European climate Risk Assessment (PRIMAVERA) Project. PRIMAVERA is a collaboration between 19 funded by the European Union’s Horizon 2020 Research & Innovation Programme.</p><p>Demory, M. E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J., Schiemann, R., & Mizielinski, M. S. (2014). The role of horizontal resolution in simulating drivers of the global hydrological cycle. CLIM DYNAM, 42(7-8), 2201-2225.</p><p>Vannière, B., Demory, M. E., Vidale, P. L., Schiemann, R., Roberts, M. J., Roberts, C. D., ... & Senan, R. (2018). Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. CLIM DYNAM, 1-30.</p>


Author(s):  
Steven L. McMurtry ◽  
Susan J. Rose ◽  
Lisa K. Berger

Accurate measurement is essential for effective social work practice, but doing it well can be difficult. One solution is to use rapid assessment instruments (RAIs), which are brief scales that typically require less than 15 minutes to complete. Some are administered by practitioners, but most are self-administered on paper or electronically. RAIs are available for screening, initial assessment, monitoring of service progress, and outcome evaluation. Some require author permission, others are sold commercially, and many more are free and in the public domain. Selection of an RAI should be based first on its psychometric strength, including content, concurrent, and known-groups validity, as well as on types of reliability such as internal consistency, but practical criteria such as readability are also important. And when used in practice settings, RAIs should be part of a well-rounded measurement plan that also includes behavioral observations, client logs, unobtrusive measures, and other approaches.


2005 ◽  
Vol 18 (17) ◽  
pp. 3536-3551 ◽  
Author(s):  
Bart van den Hurk ◽  
Martin Hirschi ◽  
Christoph Schär ◽  
Geert Lenderink ◽  
Erik van Meijgaard ◽  
...  

Abstract Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections.


1998 ◽  
Vol 252 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Meike Hennecke ◽  
Annette Otto ◽  
Melanie Baensch ◽  
Axel Kola ◽  
Wilfried Bautsch ◽  
...  

2017 ◽  
Vol 18 (6) ◽  
pp. 1563-1582 ◽  
Author(s):  
Diana L. Verseghy ◽  
Murray D. MacKay

Abstract The Canadian Small Lake Model (CSLM), version 2, was run with the Canadian Land Surface Scheme (CLASS), version 3.6.1, in an offline regional test over western Canada. Forcing data were derived from ERA-Interim and downscaled using the fifth-generation Canadian Regional Climate Model (CRCM5). The forcing precipitation field was adjusted using monthly data from the Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) observation-based dataset. The modeled surface air temperature was evaluated against CANGRD data, the modeled albedo against MODIS data, and the modeled snow water equivalent against Canadian Meteorological Centre (CMC) and Global Snow Monitoring for Climate Research (GlobSnow) data. The lake simulation itself was evaluated using the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (ARC-Lake) dataset. Summer surface lake temperatures and the lake ice formation and breakup periods were well simulated, except for slight warm/cold summer/fall surface temperature biases, early ice breakup, and early ice formation, consistent with warm/cold biases in the climate simulation. Tests were carried out to investigate the sensitivity of the CSLM simulation to the default values assigned to the shortwave extinction coefficient and the average lake depth, and changing the former from 0.5 to 2.0 m−1 and the latter from 10.0 to 50.0 or 5.0 m had minimal effects on the simulation. Comparisons of the average annual variations of the simulated net shortwave radiation, turbulent fluxes, snowpack, and maximum and minimum daily surface temperatures between the land and the lake fractions for tundra, boreal, and southern regions showed patterns consistent with those expected. Finally, a test of the CSLM over the large resolved lakes in the model domain demonstrated a performance comparable to that for subgrid lakes.


2005 ◽  
Vol 51 (5) ◽  
pp. 1-4
Author(s):  
B. van den Hurk ◽  
J. Beersma ◽  
G. Lenderink

Simulations with regional climate models (RCMs), carried out for the Rhine basin, have been analyzed in the context of implications of the possible future discharge of the Rhine river. In a first analysis, the runoff generated by the RCMs is compared to observations, in order to detect the way the RCMs treat anomalies in precipitation in their land surface component. A second analysis is devoted to the frequency distribution of area averaged precipitation, and the impact of selection of various driving global climate models.


Sign in / Sign up

Export Citation Format

Share Document