scholarly journals A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Hari Prasad Dasari ◽  
Rui Salgado ◽  
Joao Perdigao ◽  
Venkata Srinivas Challa

In this study regional climate simulations of Europe over the 60-year period (1950–2010) made using a 25 km resolution WRF model with NCEP 2.5 degree analysis for initial/boundary conditions are presented for air temperature and extreme events of heat and cold waves. The E-OBS 25 km analysis data sets are used for model validation. Results suggest that WRF could simulate the temperature trends (mean, maximum, minimum, seasonal maximum, and minimum) over most parts of Europe except over Iberian Peninsula, Mediterranean, and coastal regions. Model could simulate the slight fall of temperatures from 1950 to 1970 as well as steady rise in temperatures from 1970 to 2010 over Europe. Simulations show occurrence of about 80% of the total heat waves in the period 1970–2010 with maximum number of heat/cold wave episodes over Eastern and Central Europe in good agreement with observations. Relatively poor correlations and high bias are found for heat/cold wave episodes over the complex topographic areas of Iberia and Mediterranean regions where land surface processes play important role in local climate. The poor simulation of temperatures over the above regions could be due to deficiencies in representation of topography and surface physics which need further sensitivity studies.

2020 ◽  
Vol 13 (11) ◽  
pp. 5345-5366
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

Abstract. The representation and projection of extreme temperature and precipitation events in regional and global climate models are of major importance for the study of climate change impacts. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensity, duration and frequency of these extremes. Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) model to determine the influence of the land surface model (LSM) component on uncertainties associated with extreme events. First, we analyze land–atmosphere interactions within four simulations performed by the WRF model from 1980 to 2012 over North America, using three different LSMs. Results show LSM-dependent differences at regional scales in the frequency of occurrence of events when surface conditions are altered by atmospheric forcing or land processes. The inter-model range of extreme statistics across the WRF simulations is large, particularly for indices related to the intensity and duration of temperature and precipitation extremes. Our results show that the WRF simulation of the climatology of heat extremes can be 5 ∘C warmer and 6 d longer depending on the employed LSM component, and similarly for cold extremes and heavy precipitation events. Areas showing large uncertainty in WRF-simulated extreme events are also identified in a model ensemble from three different regional climate model (RCM) simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project, revealing the implications of these results for other model ensembles. Thus, studies based on multi-model ensembles and reanalyses should include a variety of LSM configurations to account for the uncertainty arising from this model component or to test the performance of the selected LSM component before running the whole simulation. This study illustrates the importance of the LSM choice in climate simulations, supporting the development of new modeling studies using different LSM components to understand inter-model differences in simulating extreme temperature and precipitation events, which in turn will help to reduce uncertainties in climate model projections.


2020 ◽  
pp. 1-49
Author(s):  
Donghyuck Yoon ◽  
Dong-Hyun Cha ◽  
Myong-In Lee ◽  
Ki-Hong Min ◽  
Sang-Yoon Jun ◽  
...  

AbstractSouth Korea’s heat wave events over 39 years (1980–2018) were defined by spatiotemporal criteria, and their quantitative characteristics were analyzed. The duration and intensity of these events ranked the highest in 2016 and 2018. An examination of synoptic conditions of heat wave events in 2016 and 2018 based on a reanalysis dataset revealed a positive anomaly of 500-hPa geopotential height, which could have induced warm conditions over the Korean Peninsula in both years. However, a difference prevailed in that there was a blocking high over the Kamchatka Peninsula and a continental thermal high over northern China in 2016, while the expansion of the western North Pacific subtropical-high was mainly associated with 2018 heat wave events. Numerical experiments using the Weather Research and Forecasting model (WRF) were conducted to (1) evaluate how distinct meteorological characteristics of heat wave events in 2016 and 2018 were reproduced by the model, and (2) investigate how they affect extreme temperature events. Typical synoptic features of the 2016 heat wave events (i.e., Kamchatka blocking and continental thermal high) were not captured well by the WRF model, while those of 2018 were reasonably reproduced. On the contrary, the heat wave event during late-August 2016 related to the Kamchatka blocking high was realistically simulated when the blocking was artificially persisted by applying the spectral nudging. In conclusion, the existence of a blocking high over the Kamchatka region (i.e., northern Pacific region) is an important feature to accurately predict long-lasted heat waves in East Asia.


2020 ◽  
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
J. Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

<p class="western"><span>The representation and projection of extreme temperature and precipitation events in climate models are of major importance for developing polices to build communities’ resilience in the face of climate change. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensities, durations and frequencies of these extremes. </span></p> <p class="western"><span>Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) Regional Climate Model (RCM) to determine the influence of the choice of land surface model (LSM) component on the uncertainty in the simulation of extreme event statistics. First, we evaluate land-atmosphere interactions within four simulations performed with the WRF model coupled to three different LSMs from 1980 to 2012 over North America. Results show regional differences among simulations for the frequency of events when surface conditions are altered by atmospheric forcing or by land surface processes. Second, we find a large inter-model range of extreme statistics across the ensemble of WRF-LSM simulations. This is particularly the case for indices related to the intensity and duration of temperature and precipitation extremes. </span></p> <p class="western"><span>Regions displaying large uncertainty in the WRF simulation of extreme events are also identified in a model ensemble experiment carried out with three different RCMs participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. This agreement between the model simulations performed in this work and the set of CORDEX simulations suggests that the implications of our results are valid for other model ensembles. This study illustrates the importance of supporting the development of new multi-LSM modeling studies to understand inter-model differences in simulating extreme events, ultimately helping to narrow down the range across climate model projections.</span></p>


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


2017 ◽  
Vol 866 ◽  
pp. 108-111
Author(s):  
Theerapan Saesong ◽  
Pakpoom Ratjiranukool ◽  
Sujittra Ratjiranukool

Numerical Weather Model called The Weather Research and Forecasting model, WRF, developed by National Center for Atmospheric Research (NCAR) is adapted to be regional climate model. The model is run to perform the daily mean air surface temperatures over northern Thailand in 2010. Boundery dataset provided by National Centers for Environmental Prediction, NCEP FNL, (Final) Operational Global Analysis data which are on 10 x 10. The simulated temperatures by WRF with four land surface options, i.e., no land surface scheme (option 0), thermal diffusion (option 1), Noah land-surface (option 2) and RUC land-surface (option 3) were compared against observational data from Thai Meteorological Department (TMD). Preliminary analysis indicated WRF simulations with Noah scheme were able to reproduce the most reliable daily mean temperatures over northern Thailand.


2015 ◽  
Vol 54 (2) ◽  
pp. 370-394 ◽  
Author(s):  
Julia Andrys ◽  
Thomas J. Lyons ◽  
Jatin Kala

AbstractThe authors evaluate a 30-yr (1981–2010) Weather Research and Forecast (WRF) Model regional climate simulation over the southwest of Western Australia (SWWA), a region with a Mediterranean climate, using ERA-Interim boundary conditions. The analysis assesses the spatial and temporal characteristics of climate extremes, using a selection of climate indices, with an emphasis on metrics that are relevant for forestry and agricultural applications. Two nested domains at 10- and 5-km resolution are examined, with the higher-resolution simulation resolving convection explicitly. Simulation results are compared with a high-resolution, gridded observational dataset that provides daily rainfall, minimum temperatures, and maximum temperatures. Results show that, at both resolutions, the model is able to simulate the daily, seasonal, and annual variation of temperature and precipitation well, including extreme events. The higher-resolution domain displayed significant performance gains in simulating dry-season convective precipitation, rainfall around complex terrain, and the spatial distribution of frost conditions. The high-resolution domain was, however, influenced by grid-edge effects in the southwestern margin, which reduced the ability of the domain to represent frontal rainfall along the coastal region. On the basis of these results, the authors feel confident in using the WRF Model for regional climate simulations for the SWWA, including studies that focus on the spatial and temporal representation of climate extremes. This study provides a baseline climatological description at a high resolution that can be used for impact studies and will also provide a benchmark for climate simulations driven by general circulation models.


2012 ◽  
Vol 140 (10) ◽  
pp. 3259-3277 ◽  
Author(s):  
Chunxi Zhang ◽  
Yuqing Wang ◽  
Axel Lauer ◽  
Kevin Hamilton

Abstract The Weather Research and Forecasting (WRF) model V3.3 has been configured for the Hawaiian Islands as a regional climate model for the region (HRCM). This paper documents the model configuration and presents a preliminary evaluation based on a continuous 1-yr simulation forced by observed boundary conditions with 3-km horizontal grid spacing in the inner nested domain. The simulated vertical structure of the temperature and humidity are compared with twice-daily radiosonde observations at two stations. Generally the trade wind inversion (TWI) height and occurrence days are well represented. The simulation over the islands is compared with observations from nine surface climatological stations and a dense network of precipitation stations. The model simulation has generally small biases in the simulated surface temperature, relative humidity, and wind speed. The model realistically simulated the magnitude and geographical distribution of the mean rainfall over the Hawaiian Islands. In addition, the model simulation reproduced reasonably well the individual heavy rainfall events as seen from the time series of pentad mean rainfall averaged over island scales. Also the model reproduced the geographical variation of the mean diurnal rainfall cycle even though the observed diurnal cycle displays quite different features over different islands. Comparison with results obtained using the land surface dataset from the official release of the WRF model confirmed that the newly implemented land surface dataset generally improved the simulation of surface variables. These results demonstrate that the WRF can be a useful tool for dynamical downscaling of regional climate over the Hawaiian Islands.


Geofizika ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 131-152
Author(s):  
Joanna Jędruszkiewicz ◽  
Joanna Wibig

This work gives an overview on how the projected changes in the extremes in Poland might impact human health and economy. For that purpose, statisti-cally corrected data from 7 regional climate models were used. A significant increase of extreme hot events (i.e. heat waves, tropical nights) is projected for Central and Southern Poland for the end of the 21st century which might seri-ously affect a society living in large urban areas. Less extreme cold events im-prove thermal comfort in winter. The negative impact of the warming will affect energy systems with higher demand for electricity in summer and agriculture: an earlier beginning of the growing season and flower blooming will enhance the risk of frost damages in spring, whereas excessive heat will reduce yields in summer. Polish tourism should benefit from higher thermal comfort (except for hot July and August in the far future and warming in the winter season bring-ing snow cover depletion in the near future).


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jing Zou ◽  
Chesheng Zhan ◽  
Ruxin Zhao ◽  
Peihua Qin ◽  
Tong Hu ◽  
...  

In this study, the RegCM4 regional climate model was employed to investigate the impacts of water consumption in the Haihe Plain on the local climate in the nearby Taihang Mountains. Four simulation tests of twelve years’ duration were conducted with various schemes of water consumption by residents, industries, and agriculture. The results indicate that water exploitation and consumption in the Haihe Plain causes wetting and cooling of the local land surface and rapid increases in the depth of the groundwater table. These wetting and cooling effects increase atmospheric moisture, which is transported to surrounding areas, including the Taihang Mountains to the west. In a simulation where water consumption in the Haihe Plain was doubled, the wetting and cooling effects in the Taihang Mountains were enhanced but at less than double the amount, because a cooler land surface does not enhance atmospheric convective activities. The impacts of water consumption activities in the Haihe Plain were more obvious during the irrigation seasons (primarily spring and summer). In addition, the land surface variables in the Taihang Mountains, e.g., sensible and latent heat fluxes, were less sensitive to the climatic impacts due to the water consumption activities in the Haihe Plain because they were strongly affected by local surface energy balance.


2016 ◽  
Vol 17 (3) ◽  
pp. 829-851 ◽  
Author(s):  
Xin-Min Zeng ◽  
B. Wang ◽  
Y. Zhang ◽  
Y. Zheng ◽  
N. Wang ◽  
...  

Abstract To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.


Sign in / Sign up

Export Citation Format

Share Document