Properties of a propionic acid/formic acid preserved silage of cod viscera

1977 ◽  
Vol 28 (7) ◽  
pp. 647-653 ◽  
Author(s):  
Asbjørn Gildberg ◽  
Jan Raa
Keyword(s):  
2010 ◽  
Vol 10 (2) ◽  
pp. 3937-3974 ◽  
Author(s):  
S. R. Tong ◽  
L. Y. Wu ◽  
M. F. Ge ◽  
W. G. Wang ◽  
Z. F. Pu

Abstract. A study of the atmospheric heterogeneous reactions of formic acid, acetic acid, and propionic acid on dust particles (α-Al2O3) was performed at ambient condition by using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor. From the analysis of the spectral features, observations of carboxylates formation provide strong evidence for an efficient reactive uptake process. Comparison of the calculated and experimental vibrational frequencies of adsorbed carboxylates establishes the bridging coordinated structures on the surface. The uptake coefficients of formic acid, acetic acid, and propionic acid on α-Al2O3 particles are (2.07±0.26)×10−3, (5.00±0.69)×10−3, and (3.04±0.63)×10−3, respectively (using geometric area). Besides, the effect of various relative humid (RH) on this heterogeneous reactions was studied. The uptake coefficients of monocarboxylic acids on α-Al2O3 particles increase initially (RH<20%) and then decrease with the increased RH (RH>20%) which was due to the effect of water on carboxylic acids solvation, particles surface hydroxylation, and competition on reactive site. On the basis of the results of experimental simulation, the mechanism of heterogeneous reaction of dust with carboxylic acids at ambient condition was discussed. The loss of atmospheric monocarboxylic acids due to reactive uptake on available mineral dust particles can be competitive with homogeneous loss pathways, especially in dusty urban and desertified environments.


2021 ◽  
Vol 8 (3) ◽  
pp. 159-165
Author(s):  
Muheri Indra Aja Nasution ◽  
Yunilas ◽  
E Mirwandhono

Black Soldier Fly has high protein but there are anti-nutrients, namely the presence of chitin content that cannot be digested by livestock such as poultry and monogastrics. Chitin is a natural polysaccharide that is abundantly found from crustacean organisms and insects. Chitin is usually bound to the shell or exoskeleton, proteins, minerals and pigments. Black Soldier Fly in the prepupa phase has high protein, dark brown body and a rather hard exoskeleton which causes a high chitin content. The aim of this research was to determine the concentration of propionic and formic acids which could reduce the chitin content of the prepupa phase of the Black Soldier Fly (Hermetia illucens) fermentation. This study used a completely randomized design (CRD) with five treatments, namely P1 = (BSF added 50% propionic acid + 50% formic acid), P2 = (BSF added 80% propionic acid and formic acid + 20% aquadest), P3 = (BSF added 60% propionic and formic acids + 40% aquadest), P4 = (BSF added 40% propionic and formic acids + 60% aquadest), P5 = (BSF added 20% propionic acid and formic acid + 80% aquadest) with three repetitions. The results of this study indicate that the P1 treatment (addition of 50% propionic acid + 50% formic acid) resulted in the lowest reduction in chitin content, namely (11.00%), pH value (4.7), total titrated acid (0.014%) and organoleptic (light brown color, very sour aroma and harsh texture).


2015 ◽  
Vol 55 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Tarek Abd El-Ghafar El-Shahawy

AbstractLife cannot exist without water. Appropriate management of water, from the water’s source to its utilization, is necessary to sustain life. Aquatic weeds pose a serious threat to aquatic environments and related eco-environments. Short- and long-term planning to control aquatic weeds is extremely important. Water hyacinth,Eichhornia crassipes(Mart.) Solms, is one of the world’s worst pests with a bad reputation as an invasive weed. In this study we are seeking the possibility of using certain chemicals with a natural background, for controlling water hyacinth since there is a delicate balance that needs to be taken into account when using herbicides in water. Five compounds, namely: acetic acid, citric acid, formic acid, and propionic acid, in three concentrations (10, 15, and 20%) were applied (i.e. as a foliar application under wire-house conditions) and compared with the use of the herbicide glyphosate (1.8 kg ∙ ha−1). All of the five compounds performed well in the control of the water hyacinth. As expected, the efficacy increased as the concentration was increased from 10 to 20%. With formic and propionic acids, the plants died earlier than when the other acids or the herbicide glyphosate, were used. Acetic acid came after formic and propionic acids in terms of efficacy. Citric acid ranked last. Formic acid/propionic acid mixtures showed superior activity in suppressing water hyacinth growth especially at the rate of (8 : 2) at the different examined concentrations (3 or 5 or 10%) compared to the formic acid/acetic acid mixtures. Using the formic acid/propionic acid mixture (8 : 2; at 3%) in the open field, provided good control and confirmed the viability of these chemicals in the effective control of water hyacinth. Eventually, these chemical treatments could be used on water for controlling water hyacinth. In the future, these chemicals could probably replace the traditional herbicides widely used in this regard. These chemicals are perceived as environmentally benign for their rapid degradation to carbon dioxide and water. For maximum efficiency thorough coverage especially in bright sunlight is essential.


2010 ◽  
Vol 10 (16) ◽  
pp. 7561-7574 ◽  
Author(s):  
S. R. Tong ◽  
L. Y. Wu ◽  
M. F. Ge ◽  
W. G. Wang ◽  
Z. F. Pu

Abstract. A study of the atmospheric heterogeneous reactions of formic acid, acetic acid, and propionic acid on α-Al2O3 was performed at ambient condition by using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor. From the analysis of the spectral features, observations of carboxylates formation provide strong evidence for an efficient reactive uptake process. Comparison of the calculated and experimental vibrational frequencies of adsorbed carboxylates establishes the bridging coordinated structures on the surface. The uptake coefficients of formic acid, acetic acid, and propionic acid on α-Al2O3 particles are (2.07±0.26)×10−3 or (2.37±0.30) ×10−7, (5.00±0.69)×10−3 or (5.99±0.78)×10−7, and (3.04±0.63)×10−3 or (3.03±0.52)×10−7, respectively (using geometric or BET surface area). Furthermore, the effect of varying relative humidity (RH) on these heterogeneous reactions was studied. The uptake coefficients of monocarboxylic acids on α-Al2O3 particles increase initially (RH<20%) and then decrease with the increased RH (RH>20%) which was due to the effect of water on carboxylic acid solvation, particle surface hydroxylation, and competition for reactive sites. On the basis of the results of experimental simulation, the mechanism of heterogeneous reaction of α-Al2O3 with carboxylic acids at ambient RH was discussed. The loss of atmospheric monocarboxylic acids due to reactive uptake on available mineral dust particles may be competitive with homogeneous loss pathways, especially in dusty urban and desertified environments.


1983 ◽  
Vol 38 (12) ◽  
pp. 1400-1401 ◽  
Author(s):  
R. Haase ◽  
H.-J. Jansen ◽  
B. Winter

Abstract For the binary liquid systems formic acid + acetic acid, formic acid + propionic acid, and acetic acid + propionic acid, we give the results of new calorimetric measurements of the molar excess enthalpy H̄E at 25 °C, 30 °C, 40 °C, and 60°C, covering the entire range of compositions. H̄E is always positive, increases linearly with the temperature, and is slightly asymmetric with respect to the mole fraction x. The composition at the maximum of the function H̄E(x) is independent of the temperature.


Sign in / Sign up

Export Citation Format

Share Document