scholarly journals Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment

2017 ◽  
Vol 98 (6) ◽  
pp. 2360-2369 ◽  
Author(s):  
Giovanna Visioli ◽  
Urbana Bonas ◽  
Cristian Dal Cortivo ◽  
Gabriella Pasini ◽  
Nelson Marmiroli ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1231 ◽  
Author(s):  
Francesca Taranto ◽  
Nunzio D’Agostino ◽  
Marcello Catellani ◽  
Luca Laviano ◽  
Domenico Ronga ◽  
...  

While durum wheat is a major food source in Mediterranean countries, storage (i.e., gluten) proteins are however responsible for celiac disease (CD), a serious autoimmune disease that occurs in genetically predisposed subjects. Different gluten epitopes—defined as “immunogenic” (IP) and “toxic” (TP) peptides—are involved in the pathology and their content in wheat grain depends on environmental and genetic factors. Detection of IP and TP is not trivial, and no work has been conducted so far to identify the genomic regions associated with their accumulation in wheat. In the present study, a genome-wide association study was performed on a durum wheat collection to identify marker–trait associations (MTAs) between 5730 high quality SNPs and the accumulation of CD-related peptides and gluten protein composition measured in two consecutive cropping seasons (2015/2016 and 2016/2017). High-molecular-weight glutenin subunits (HMW-GS) were more stable between the two years, and differences in total gluten proteins were mainly due to low-molecular-weight glutenin subunits (LMW-GS) and accumulation of gliadins. In the first instance, association tests were conducted on yellow pigment content (YP), a highly inheritable trait with a well-known genetic basis, and several significant MTAs were found corresponding to loci already known for being related to YP. These findings showed that MTAs found for the rest of the measured traits were reliable. In total, 28 significant MTAs were found for gluten composition, while 14 were found to be associated with IP and TP. Noteworthy, neither significant (−log10p > 4.7) nor suggestive (−log10p > 3.3) MTAs for the accumulation of CD-triggering epitopes were found on Gli-A1/Glu-A3 and Gli-B1/Glu-B3 loci, thus suggesting regulatory rather than structural gene effect. A PBF transcription factor on chromosome 5B, known to be involved in the regulation of the expression of CD-related peptides, was identified among the positional candidate genes in the LD-decay range around significant SNPs. Results obtained in the present study provide useful insights and resources for the long-term objective of selecting low-toxic durum wheat varieties while maintaining satisfactory gluten quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Laura Ercoli ◽  
Alessandro Masoni ◽  
Silvia Pampana ◽  
Marco Mariotti ◽  
Iduna Arduini

Crop sequence is an important management practice that may affect durum wheat (Triticum durumDesf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativaL.), maize (Zea maysL.), sunflower (Helianthus annuusL.), and bread wheat (Triticum aestivumL.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


2019 ◽  
Vol 17 (04) ◽  
pp. 386-389
Author(s):  
Miguel Bento ◽  
Sónia Gomes Pereira ◽  
Wanda Viegas ◽  
Manuela Silva

AbstractAssessing durum wheat genomic diversity is crucial in a changing environmental particularly in the Mediterranean region where it is largely used to produce pasta. Durum wheat varieties cultivated in Portugal and previously assessed regarding thermotolerance ability were screened for the variability of coding sequences associated with technological traits and repetitive sequences. As expected, reduced variability was observed regarding low molecular weight glutenin subunits (LMW-GS) but a specific LMW-GS allelic form associated with improved pasta-making characteristics was absent in one variety. Contrastingly, molecular markers targeting repetitive elements like microsatellites and retrotransposons – Inter Simple Sequence Repeat (ISSR) and Inter Retrotransposons Amplified Polymorphism (IRAP) – disclosed significant inter and intra-varietal diversity. This high level of polymorphism was revealed by the 20 distinct ISSR/IRAP concatenated profiles observed among the 23 individuals analysed. Interestingly, median joining networks and PCoA analysis grouped individuals of the same variety and clustered varieties accordingly with geographical origin. Globally, this work demonstrates that durum wheat breeding strategies induced selection pressure for some relevant coding sequences while maintaining high levels of genomic variability in non-coding regions enriched in repetitive sequences.


2017 ◽  
Vol 109 (6) ◽  
pp. 2606-2612
Author(s):  
D. A. Katsileros ◽  
S. Hadasch ◽  
H. P. Piepho ◽  
G. N. Skaracis

Sign in / Sign up

Export Citation Format

Share Document