Protein digestion properties of Xinong Saanen goat colostrum and mature milk using in vitro digestion model

2019 ◽  
Vol 99 (13) ◽  
pp. 5819-5825 ◽  
Author(s):  
Yuxue Sun ◽  
Cuina Wang ◽  
Xiaomeng Sun ◽  
Mingruo Guo
Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Katharina Pälchen ◽  
Ben Van den Wouwer ◽  
Dorine Duijsens ◽  
Marc E. Hendrickx ◽  
Ann Van Loey ◽  
...  

Processing results in the transformation of pulses’ structural architecture. Consequently, digestion is anticipated to emerge from the combined effect of intrinsic (matrix-dependent) and extrinsic (processed-induced) factors. In this work, we aimed to investigate the interrelated effect of intrinsic and extrinsic factors on pulses’ structural architecture and resulting digestive consequences. Three commercially relevant pulses (chickpea, pea, black bean) were selected based on reported differences in macronutrient and cell wall composition. Starch and protein digestion kinetics of hydrothermally processed whole pulses were assessed along with microstructural and physicochemical characteristics and compared to the digestion behavior of individual cotyledon cells isolated thereof. Despite different rates of hardness decay upon hydrothermal processing, the pulses reached similar residual hardness values (40 N). Aligning the pulses at the level of this macrostructural property translated into similar microstructural characteristics after mechanical disintegration (isolated cotyledon cells) with comparable yields of cotyledon cells for all pulses (41–62%). We observed that processing to equivalent microstructural properties resulted in similar starch and protein digestion kinetics, regardless of the pulse type and (prolonged) processing times. This demonstrated the capacity of (residual) hardness as a food structuring parameter in pulses. Furthermore, we illustrated that the digestive behavior of isolated cotyledon cells was representative of the digestion behavior of corresponding whole pulses, opening up perspectives for the incorporation of complete hydrothermally processed pulses as food ingredients.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 291 ◽  
Author(s):  
Xavier ◽  
Garrido-López ◽  
Aguayo-Maldonado ◽  
Garrido-Fernández ◽  
Fontecha ◽  
...  

Human milk is a complex fluid with nutritive and non-nutritive functions specifically structured to cover the needs of the newborn. The present study started with the study of carotenoid composition during progress of lactation (colostrum, collected at 3–5 d postpartum; mature milk, collected at 30 d postpartum) with samples donated from full-term lactating mothers (women with no chronic diseases, nonsmokers on a regular diet without supplements, n = 30). Subsequently, we applied an in vitro protocol to determine the micellarization efficiency of the carotenoids, which were separated by HPLC and quantified by the external standard method. That in vitro protocol is tailored for the biochemistry of the digestive tract of a newborn. To the best of our knowledge, the present study is the first report of carotenoids micellar contents, obtained in vitro. This study reveals, from the in vitro perspective, that colostrum and mature milk produce significant micellar contents of carotenoids despite lipids in milk are within highly complex structures. Indeed, the lactation period develops some influence on the micellarization efficiency, influence that might be attributed to the dynamics of the milk fat globule membrane (MFGM) during the progress of lactation.


2019 ◽  
Vol 10 (12) ◽  
pp. 7687-7696 ◽  
Author(s):  
Bonnie Kung ◽  
Sylvie L. Turgeon ◽  
Laurie-Eve Rioux ◽  
G. Harvey Anderson ◽  
Amanda J. Wright ◽  
...  

In vitro digestion of cereal with high protein milks reflects the appearance of in vivo biomarkers of starch and protein digestion.


2010 ◽  
Vol 58 (8) ◽  
pp. 5074-5080 ◽  
Author(s):  
Lovedeep Kaur ◽  
Shane M. Rutherfurd ◽  
Paul J. Moughan ◽  
Lynley Drummond ◽  
Mike J. Boland

2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2019 ◽  
Vol 141 ◽  
pp. 240-246 ◽  
Author(s):  
Hui Zhang ◽  
Zhi Li ◽  
Yanjun Tian ◽  
Zibo Song ◽  
Lianzhong Ai

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 140 ◽  
pp. 110054
Author(s):  
Pablo Gallego-Lobillo ◽  
Alvaro Ferreira-Lazarte ◽  
Oswaldo Hernández-Hernández ◽  
Mar Villamiel

2021 ◽  
Vol 350 ◽  
pp. 129246
Author(s):  
Serena Martini ◽  
Alice Cattivelli ◽  
Angela Conte ◽  
Davide Tagliazucchi

Sign in / Sign up

Export Citation Format

Share Document