Uncultivated stromal vascular fraction is equivalent to adipose‐derived stem and stromal cells on porous polyurethrane scaffolds forming adipose tissue in vivo

2018 ◽  
Vol 128 (6) ◽  
Author(s):  
Michael Griessl ◽  
Anna‐Maria Buchberger ◽  
Sybille Regn ◽  
Kilian Kreutzer ◽  
Katharina Storck
2014 ◽  
Vol 222 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jillian L Rourke ◽  
Shanmugam Muruganandan ◽  
Helen J Dranse ◽  
Nichole M McMullen ◽  
Christopher J Sinal

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murineGpr1mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) andCmklr1,Gpr1expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygousGpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lackingGpr1exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects ofGpr1deficiency on adiposity, energy balance, and glucose homeostasisin vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


2022 ◽  
pp. 47-61
Author(s):  
Enrico Ragni ◽  
Marco Viganò ◽  
Paola De Luca ◽  
Edoardo Pedrini ◽  
Laura de Girolamo

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Dulak ◽  
J Stepniewski ◽  
M Tomczyk ◽  
K Andrysiak ◽  
I Kraszewska ◽  
...  

Abstract Introduction Despite progress in pharmacological treatment of myocardial infarction (MI), there is still an immense need for novel therapies for this life-threatening condition. Accordingly, cell-based therapies have been extensively investigated with most studies focusing on mesenchymal stromal cells. However due to their inability to differentiate into cardiomyocytes as well as limited survival upon in vivo administration, no effective treatment of MI has been developed. In contrast, application of hiPSC-derived cardiomyocytes (hiPSC-CM) represent biologically rational approach with pre-clinical studies confirming their therapeutic potential in various models of MI. However further optimization is required due to limited survival of hiPSC-CM upon in vivo administration. Therefore, we evaluated the therapeutic potential of genetically modified hiPSC-CM in murine model of acute MI and compared it to the effect of adipose tissue-derived stromal cells (ADSC). Methods In the first step hiPSC overexpressing GFP, luciferase (Luc) and pro-angiogenic and cardioprotective factors: heme oxygenase-1 (HO-1, heme degrading enzyme) or stromal cell-derived factor-1 (SDF-1, pro-angiogenic chemokine) were subjected to cardiac differentiation which yielded in each group 70–90% cardiac troponin T-positive contracting cells. hiPSC-CM (5x105 in 10 μl) were administered into NOD-SCID mice which underwent permanent ligation of left anterior descending (LAD) coronary artery. The cells were injected into the peri-infarct zone. Mice subjected to sham operation as well as injected with saline after MI were used as controls. The ultrasonography of hearts was performed on day 7, 14, 28 and 42 whereas the presence of hiPSC-CM was monitored using IVIS Spectrum system upon administration of luciferin and analysed in sections of collected hearts. The same experimental scheme was used to assess therapeutic potential of ADSC (CD105+CD73+CD90+CD44+CD146-CD34-) overexpressing luciferase and GFP. Results Ultrasonography demonstrated that upon delivery of hiPSC-CM the left ventricle ejection fraction (LVEF) was very significantly higher in comparison to control group injected with saline after induction of MI. In contrast, no improvement of LVEF was observed after administration of ADSC. Interestingly, measurements of luciferase activity revealed the strongest bioluminescent signal in the hearts of mice transplanted with iPSC-CM-HO1 42 days after MI. Importantly, the survival of hiPSC-CM in murine myocardium six weeks upon administration was further confirmed with immunofluorescent analysis of heart sections using human specific anti-Ku80 antibody. Again, luciferase activity was not observed upon delivery of ADSC. Conclusion These results strongly indicate that administration of hiPSC-CM, unlike ADSC, preserve murine heart function in acute MI model. Additionally, overexpression of HO-1 may positively influence their survival upon in vivo delivery into infarcted tissue. Acknowledgement/Funding The National Centre for Research and Development (STRATEGMED 2/269415/11/NCBR/2015), National Science Centre of Poland (HARMONIA 2014/14/M/NZ1/00010)


2020 ◽  
Vol 21 (3) ◽  
pp. 799 ◽  
Author(s):  
Joanna Lelek ◽  
Ewa K. Zuba-Surma

Mesenchymal stem/ stromal cells (MSCs) represent progenitor cells of various origin with multiple differentiation potential, representing the most studied population of stem cells in both in vivo pre-clinical and clinical studies. MSCs may be found in many tissue sources including extensively studied adipose tissue (ADSCs) and umbilical cord Wharton’s jelly (UC-MSCs). Most of sanative effects of MSCs are due to their paracrine activity, which includes also release of extracellular vesicles (EVs). EVs are small, round cellular derivatives carrying lipids, proteins, and nucleic acids including various classes of RNAs. Due to several advantages of EVs when compare to their parental cells, MSC-derived EVs are currently drawing attention of several laboratories as potential new tools in tissue repair. This review focuses on pro-regenerative properties of EVs derived from ADSCs and UC-MSCs. We provide a synthetic summary of research conducted in vitro and in vivo by employing animal models and within initial clinical trials focusing on neurological, cardiovascular, liver, kidney, and skin diseases. The summarized studies provide encouraging evidence about MSC-EVs pro-regenerative capacity in various models of diseases, mediated by several mechanisms. Although, direct molecular mechanisms of MSC-EV action are still under investigation, the current growing data strongly indicates their potential future usefulness for tissue repair.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jonathan Rodriguez ◽  
Anne-Sophie Pratta ◽  
Nacira Abbassi ◽  
Hugo Fabre ◽  
Fanny Rodriguez ◽  
...  

Adipose-derived stem/stromal cells (ASCs) reside in the stromal vascular fraction (SVF) of adipose tissue (AT) and can be easily isolated. However, extraction of the SVF from lipoaspirate is a critical step in generating ASC, and semiautomated devices have been developed to enhance the efficacy and reproducibility of the outcomes and to decrease manipulation and contamination. In this study, we compared the reference method used in our lab for SVF isolation from lipoaspirate, with three medical devices: GID SVF-1™, Puregraft™, and Stem.pras®. Cell yield and their viability were evaluated as well as their phenotype with flow cytometry. Further on, we determined their proliferative potential using population doublings (PD), PD time (PDT), and clonogenicity assay (CFU-F). Finally, we checked their genetic stability using RT-qPCR for TERT mRNA assay and karyotyping as well as their multilineage potential including adipogenic, chondrogenic, and osteogenic differentiation. Our results demonstrate that all the devices allow the production of SVF cells with consistent yield and viability, in less time than the reference method. Expanded cells from the four methods showed no significant differences in terms of phenotype, proliferation capabilities, differentiation abilities, and genetic stability.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 957-964 ◽  
Author(s):  
Jinah Han ◽  
Young Jun Koh ◽  
Hye Rin Moon ◽  
Hyun Gee Ryoo ◽  
Chung-Hyun Cho ◽  
...  

Abstract The stromal vascular fraction (SVF) in adipose tissue contains a pool of various stem and progenitor cells, but the existence of hematopoietic stem and progenitor cells (HSPCs) in the SVF has not been seriously considered. We detected the presence of HSPCs in the SVF by phenotypically probing with Lin−Sca-1+c-kit+ (LSK) and functionally confirming the presence using colony-forming cell assay and assessing the long-term multilineage reconstitution ability after SVF transplantation. The LSK population in the SVF was 0.004% plus or minus 0.001%, and 5 × 105 freshly isolated SVF cells gave rise to 13 plus or minus 4 multilineage colonies. In addition, 0.15% plus or minus 0.03% of SVF cells was home to bone marrow (BM), especially near vascular and endosteal regions, 24 hours after blood transplantation. SVF transplantation was capable of generating a long-term (> 16 weeks), but variable extent (2.1%-32.1%) multilineage reconstitution in primary recipients, which was subsequently transferred to the secondary recipients by BM transplantation. All HSPCs within the SVF originated from the BM. Furthermore, the granulocyte–colony-stimulating factor (G-CSF) mobilization of HSPCs from BM markedly elevated the number of phenotypic and functional HSPCs in the SVF, which induced a high efficiency long-term reconstitution in multilineage hematopoiesis in vivo. Our results provide compelling evidence that adipose tissue is a novel extramedullary tissue possessing phenotypic and functional HSPCs.


Sign in / Sign up

Export Citation Format

Share Document