In vivo CRISPR–Cas9 knockout screening using quantitative PCR identifies thymosin beta‐4 X‐linked that promotes diffuse‐type gastric cancer metastasis

2021 ◽  
Author(s):  
Hyeok‐Won An ◽  
Si‐You Kim ◽  
Jong‐Wan Kwon ◽  
Sang‐Hyuk Seok ◽  
Sang‐Ho Woo ◽  
...  
2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2021 ◽  
Author(s):  
Zi-Jian Deng ◽  
Dong-Wen Chen ◽  
Xi-Jie Chen ◽  
Jia-Ming Fang ◽  
Liang Xv ◽  
...  

Abstract Background: Gastric cancer is the fourth most common malignant disease. Both CDK10 and long noncoding RNAs (lncRNAs) have been found to exert biological functions in multiple cancers. However, it is still unclear whether CDK10 represses tumor progression in gastric cancer by reducing potential targeting lncRNAs.Methods: The functions of CDK10 and lncRNA-C5ORF42-5 in proliferation, invasion and migration were assessed by MTS assays, colony formation assays, cell cycle and apoptosis assays, Transwell assays, wound healing assays and animal experiments. We used high-throughput sequencing to confirm the existence of lncRNA-C5ORF42-5 and quantitative real-time PCR was used to evaluate lncRNA expression. Then, with RNA-seq sequencing as well as GO function and KEGG enrichment analysis, we identified the signaling pathways in which lncRNA-C5ORF42-5 was involved in gastric cancer. Finally, western blotting was used to identify the genes regulated by lncRNA-C5ORF42-5.Results: Our results showed that CDK10 is expressed at relatively low levels in gastric cancer cell lines and inhibits the progression of gastric cancer cells both in vitro and in vivo. Next, based on high-throughput sequencing, we identified a novel lncRNA, lncRNA-C5ORF42-5, in the stable CDK10-overexpressing cell line compared with the CDK-knockdown cell line and their controls. Additionally, we confirmed that lncRNA-C5ORF42-5 acts as an oncogene to promote metastasis in gastric cancer in vitro and in vivo. We then ascertained that lncRNA-C5ORF42-5 is a major contributor to the function of CDK10 in gastric cancer metastasis by upregulating lncRNA-C5ORF42-5 to reverse the effects of CDK10 overexpression. Finally, we explored the mechanism by which lncRNA-C5ORF42-5 overexpression affects gastric cancer cells to elucidate whether lncRNA-C5ORF42-5 may increase the activity of the SMAD pathway of BMP signaling and promote the expression of EMT-related proteins, such as E-cadherin. Additionally, overexpression of lncRNA-C5ORF42-5 affected the phosphorylation levels of AKT and ERK.Conclusion: Our findings suggest that CDK10 overexpression represses gastric cancer tumor progression by reducing lncRNA-C5ORF42-5 and hindering activation of the related proteins in metastatic signaling pathways, which provides new insight into developing effective therapeutic strategies in the treatment of metastatic gastric cancer.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3833
Author(s):  
Shihori Tanabe ◽  
Sabina Quader ◽  
Ryuichi Ono ◽  
Horacio Cabral ◽  
Kazuhiko Aoyagi ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer. Network pathway analysis was performed by Ingenuity Pathway Analysis (IPA). A total of 2815 probe set IDs were significantly different between intestinal- and diffuse-type GC data in cBioPortal Cancer Genomics. Our analysis uncovered 10 genes including male-specific lethal 3 homolog (Drosophila) pseudogene 1 (MSL3P1), CDC28 protein kinase regulatory subunit 1B (CKS1B), DEAD-box helicase 27 (DDX27), golgi to ER traffic protein 4 (GET4), chromosome segregation 1 like (CSE1L), translocase of outer mitochondrial membrane 34 (TOMM34), YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), ribonucleic acid export 1 (RAE1), par-6 family cell polarity regulator beta (PARD6B), and MRG domain binding protein (MRGBP), which have differences in gene expression between intestinal- and diffuse-type GC. A total of 463 direct relationships with three molecules (MYC, NTRK1, UBE2M) were found in the biomarker-filtered network generated by network pathway analysis. The networks and features in intestinal- and diffuse-type GC have been investigated and profiled in bioinformatics. Our results revealed the signaling pathway networks in intestinal- and diffuse-type GC, bringing new light for the elucidation of drug resistance mechanisms in CSCs.


2019 ◽  
Vol 23 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Seon-Kyu Kim ◽  
Hee-Jin Kim ◽  
Jong-Lyul Park ◽  
Haejeong Heo ◽  
Seon-Young Kim ◽  
...  

Abstract Background Although recent advances in high-throughput technology have provided many insights into gastric cancer (GC), few reliable biomarkers for diffuse-type GC have been identified. Here, we aim to identify a prognostic and predictive signature of diffuse-type GC heterogeneity. Methods We analyzed RNA-seq-based transcriptome data to identify a molecular signature in 150 gastric tissue samples including 107 diffuse-type GCs. The predictive value of the signature was verified using other diffuse-type GC samples in three independent cohorts (n = 466). Log-rank and Cox regression analyses were used to estimate the association between the signature and prognosis. The signature was also characterized by somatic variant analyses and tissue microarray analysis between diffuse-type GC subtypes. Results Transcriptomic profiling of RNA-seq data identified a signature which revealed distinct subtypes of diffuse-type GC: the intestinal-like (INT) and core diffuse-type (COD) subtypes. The signature showed high predictability and independent clinical utility in diffuse-type GC prognosis in other patient cohorts (HR 2.058, 95% CI 1.53–2.77, P = 1.76 × 10–6). Integrative mutational and gene expression analyses demonstrated that the COD subtype was responsive to chemotherapy, whereas the INT subtype was responsive to immunotherapy with an immune checkpoint inhibitor (ICI). Tissue microarray analysis showed the practical utility of IGF1 and NXPE2 for predicting diffuse-type GC heterogeneity. Conclusions We present a molecular signature that can identify diffuse-type GC patients who display different clinical behaviors as well as responses to chemotherapy or ICI treatment.


2001 ◽  
Vol 14 (10) ◽  
pp. 942-949 ◽  
Author(s):  
Jennifer J Ascaño ◽  
Henry Frierson ◽  
Christopher A Moskaluk ◽  
Jeffrey C Harper ◽  
Franco Roviello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document