scholarly journals Effective antitumor activity of 5T4‐specific CAR‐T cells against ovarian cancer cells in vitro and xenotransplanted tumors in vivo

MedComm ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 338-350
Author(s):  
Cuiyu Guo ◽  
E Dong ◽  
Qinhuai Lai ◽  
Shijie Zhou ◽  
Guangbing Zhang ◽  
...  
2017 ◽  
Vol 9 (10) ◽  
pp. 867-878 ◽  
Author(s):  
Yanjing Song ◽  
Chuan Tong ◽  
Yao Wang ◽  
Yunhe Gao ◽  
Hanren Dai ◽  
...  

2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 41-41
Author(s):  
Charles E. Prussak ◽  
Christopher Oh ◽  
Juliana Velez Lujan ◽  
Sharon Lam ◽  
Jieyu Zhang ◽  
...  

41 Background: Chimeric antigen receptor (CAR)-modified T cells (CAR-T) were generated targeting cells expressing ROR1, which is present on many malignant cancers and has been associated with cancer stemness and chemo-resistance. The ROR1 CAR utilizes the humanized single-chain fragment variable (scFv) binding domain of UC-961 (cirmtuzumab), which exhibits high affinity and specificity for human ROR1 and has demonstrated an excellent safety profile in Phase 1 studies. Methods: CAR constructs with varying spacer regions and intracellular co-stimulatory domains, using the scFV of cirmtuzumab, were constructed and used to generate CAR-T cells from healthy donors. These ROR1 CAR-T cells were tested for cytotoxicity against lymphoid cancer cells in vitro and in vivo studies that employed immune-deficient mice engrafted with labeled human leukemia cells MEC1 or MEC1-ROR1, which had been transfected to stably express ROR1. Results: The 2nd generation and 3rd generation CAR-T-cells with analogous spacer regions were comparably potent and selectively cytotoxic for cells bearing the ROR1 target antigen. But the 2nd generation CARs demonstrated greater potency in vitro even at low effector to target ratios. For the in vivo studies, mice received a single injection of ROR1 CAR-T cells or activated T cells from the same donor as a control. The ROR1 CAR-T cells rapidly cleared the leukemic cells from the animals, whereas animals receiving control T cells or no therapy quickly succumbed to progressive disease within 3 weeks. The administered CAR-T products remained highly active following administration and could be detected for ≥ 3 months without evidence for T cell exhaustion. Conclusions: The generated CAR-T cells utilizing constructs with the Fv of cirmtuzumab, a humanized mAb highly specific for ROR1, onco-embryonic surface antigen, effectively and selectively killed neoplastic cells bearing ROR1 both in vitro and in vivo. As ROR1 expression and signaling has been associated with cancer stemness and chemo-resistance utilizing ROR1 CAR-T therapy to target cancer cells might mitigate tumor escape. These data strongly support the rationale for continued development of our ROR1 CAR-T.


2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2020 ◽  
Vol 6 (8) ◽  
pp. eaay9209 ◽  
Author(s):  
Ziliang Huang ◽  
Yiqian Wu ◽  
Molly E. Allen ◽  
Yijia Pan ◽  
Phillip Kyriakakis ◽  
...  

T cells engineered to express chimeric antigen receptors (CARs) can recognize and engage with target cancer cells with redirected specificity for cancer immunotherapy. However, there is a lack of ideal CARs for solid tumor antigens, which may lead to severe adverse effects. Here, we developed a light-inducible nuclear translocation and dimerization (LINTAD) system for gene regulation to control CAR T activation. We first demonstrated light-controllable gene expression and functional modulation in human embryonic kidney 293T and Jurkat T cell lines. We then improved the LINTAD system to achieve optimal efficiency in primary human T cells. The results showed that pulsed light stimulations can activate LINTAD CAR T cells with strong cytotoxicity against target cancer cells, both in vitro and in vivo. Therefore, our LINTAD system can serve as an efficient tool to noninvasively control gene activation and activate inducible CAR T cells for precision cancer immunotherapy.


2021 ◽  
Vol 8 (1) ◽  
pp. 141-155
Author(s):  
Enrique Ortega ◽  
Francisco J. Ballester ◽  
Alba Hernández-García ◽  
Samanta Hernández-García ◽  
M. Alejandra Guerrero-Rubio ◽  
...  

Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitors in vitro and exert antitumor activity in vivo in C. elegans models.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 696-706 ◽  
Author(s):  
De-Gang Song ◽  
Qunrui Ye ◽  
Mathilde Poussin ◽  
Gretchen M. Harms ◽  
Mariangela Figini ◽  
...  

AbstractThe costimulatory effects of CD27 on T lymphocyte effector function and memory formation has been confined to evaluations in mouse models, in vitro human cell culture systems, and clinical observations. Here, we tested whether CD27 costimulation actively enhances human T-cell function, expansion, and survival in vitro and in vivo. Human T cells transduced to express an antigen-specific chimeric antigen receptor (CAR-T) containing an intracellular CD3 zeta (CD3ζ) chain signaling module with the CD27 costimulatory motif in tandem exerted increased antigen-stimulated effector functions in vitro, including cytokine secretion and cytotoxicity, compared with CAR-T with CD3ζ alone. After antigen stimulation in vitro, CD27-bearing CAR-T cells also proliferated, up-regulated Bcl-XL protein expression, resisted apoptosis, and underwent increased numerical expansion. The greatest impact of CD27 was noted in vivo, where transferred CAR-T cells with CD27 demonstrated heightened persistence after infusion, facilitating improved regression of human cancer in a xenogeneic allograft model. This tumor regression was similar to that achieved with CD28- or 4-1BB–costimulated CARs, and heightened persistence was similar to 4-1BB but greater than CD28. Thus, CD27 costimulation enhances expansion, effector function, and survival of human CAR-T cells in vitro and augments human T-cell persistence and antitumor activity in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A135-A135
Author(s):  
Hee Jun Lee ◽  
Cody Cullen ◽  
John Murad ◽  
Jason Yang ◽  
Wen-Chung Chang ◽  
...  

BackgroundWhile chimeric antigen receptor (CAR) T cell therapy has shown impressive clinical efficacy for hematological malignancies,1 efficacy remains limited for solid tumors due in large part to the immunosuppressive tumor microenvironment.2 Tumor-associated glycoprotein 72 (TAG72) is an aberrantly glycosylated protein overexpressed on ovarian cancer3 and is an exciting target for CAR T cell immunotherapy. Our lab previously developed a second-generation TAG72 CAR T cell product and showed its potency against TAG72-expressing ovarian tumor cells both in vitro and in preclinical mouse models.4 We report here further modification of our TAG72 CAR T cells, with incorporation of interleukin-12 (IL-12) and interleukin-15 (IL-15), and evaluate the therapeutic benefits in peritoneal ovarian tumor models.MethodsIn this preclinical study, we build upon our earlier work with in vitro and in vivo evaluation of 9 different second-generation TAG72 CAR constructs varying in single-chain variable fragment, extracellular spacer, transmembrane, and intracellular co-stimulatory domains. We then engineer CAR T cells with two types of cytokines – IL-12 and IL-15 – and put these engineered cells against challenging in vivo tumor models.ResultsThrough in vitro and in vivo studies, we identify the most optimal construct with which we aim to evaluate in a phase 1 clinical trial targeting TAG72-positive ovarian cancer in 2021. Despite thorough optimizations to the CAR backbone, CAR T cells can be additionally engineered for improved anti-tumor response. Therefore, we further engineered CAR T cells with IL-12 or IL-15 production that greatly improves the effectiveness of TAG72-CAR T cells in difficult-to-treat in vivo tumor models. We observed that modification of CAR T cells with IL-15 displayed toxicity when regionally delivered in vivo, yet introduction of IL-12 not only demonstrated safe and superior therapeutic responses, but also allowed the regional administration of CAR T cells to address systemic disease. We are now expanding these findings by evaluating these therapies using syngeneic immunocompetent mouse tumor models.ConclusionsThe tumor microenvironment (TME) harbors various factors that thwart the killing of tumor cells by CAR T cells. Thus, CAR T cells will likely require further engineering to overcome this barrier. We show that amplifying cytokine pathways is one way to overcome the TME and improve the efficacy of CAR T cell therapy for solid tumors.ReferencesMaude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015 Jun 25;125(26):4017–23.Priceman SJ, Forman SJ, Brown CE. Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 2015 Nov;27(6):466–74.Chauhan SC, Vinayek N, Maher DM, Bell MC, Dunham KA, Koch MD, Lio Y, Jaggi M. Combined Staining of TAG-72, MUC1, and CA125 Improves Labeling Sensitivity in Ovarian Cancer: Antigens for Multi-targeted Antibody-guided Therapy. J Histochem Cytochem 2007 Aug;55(8):867–75.Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ, Priceman SJ. Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 2018 Nov 19;9:2268.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A226-A226
Author(s):  
Stephen Santoro ◽  
Aaron Cooper ◽  
Natalie Bezman ◽  
Jun Feng ◽  
Kanika Chawla ◽  
...  

BackgroundIn solid tumors, CAR T cell efficacy is limited by off-tumor toxicity and suppression by the tumor microenvironment (TME). AB-X is an integrated circuit T cell (ICT cell) intended for the treatment of ovarian cancer. AB-X includes a transgene cassette with two functional modules: 1) an ”AND” logic gate designed to limit off-tumor toxicity through dual tumor antigen recognition; 2) a dual shRNA-miR to resist TME suppression and improve ICT cell function. The AB-X logic gate consists of a priming receptor that induces expression of an anti-mesothelin (MSLN) CAR upon engagement of a ALPG/P (alkaline phosphatase germ-line/placental). The dual shRNA-miR mediates downregulation of FAS and PTPN2. The AB-X DNA cassette is inserted into the T cell genome at a defined novel genomic site via CRISPR-based gene editing.MethodsDual-antigen specificity of the logic gate was assessed in mice harboring MSLN+ and ALPG/P+MSLN+ K562 tumors established on contralateral flanks. Potency was measured in a subcutaneous MSTO xenograft model. Logic-gated ICT cells were compared with MSLN CAR T cells in both models. In vitro, expansion of ICT cells with the FAS/PTPN2 shRNA-miR was evaluated in a 14 day repetitive stimulation assay (RSA). In vivo, expansion and potency were measured in the MSTO xenograft model. An in vitro FAS cross-linking assay was conducted to assess the impact of FAS knockdown on FAS-mediated apoptosis.ResultsLogic-gated ICT cells demonstrated specific activity against ALPG/P+MSLN+ tumors, but had no effect against MSLN+ tumors in the K562 in vivo specificity model. In addition, logic-gated ICT cells demonstrated greater in vivo potency than MSLN CAR T cells in the MSTO xenograft model. In our RSA, ICT cells containing the FAS/PTPN2 shRNA-miR had 8-fold greater expansion than the MSLN CAR T cells. Enhanced expansion was confirmed in vivo with ICT cells demonstrating >10-fold expansion in tumors and peripheral blood, enabling comparable growth inhibition in MSTO xenografts at less than one quarter the dose of the MSLN CAR T cells. Importantly, PTPN2 knockdown resulted in balanced expansion of all T cell subsets, including CD45RA+, CCR7+ memory cells. Lastly, ICT cells containing the FAS/PTPN2 shRNA-miR were resistant to FAS-mediated apoptosis.ConclusionsAB-X ICT cells specifically recognize ALPG/P+MSLN+ tumors, demonstrate superior potency, expansion, and persistence compared with MSLN CAR T cells, and are resistant to ovarian TME suppression. AB-X will be evaluated in clinical trials for treatment of platinum resistant/refractory ovarian cancer.AcknowledgementsWe would like to acknowledge all of our colleagues at Arsenal Biosciences, without whom this work would not have been possible.


2020 ◽  
Author(s):  
Tong Li ◽  
Jiandong Wang

Abstract Background: More favorable treatment against epithelial ovarian cancer (EOC) is urgently needed because of its insidious nature at an early stage and a low rate of five-year survival. The current primary treatment, extensive surgery combined with chemotherapy, exhibits limited benefits for improving prognosis. Chimeric antigen receptor T (CAR-T) cell technology as novel immunotherapy has made breakthrough progress in the treatment of hematologic malignancies, and there were also benefits shown in a partial solid tumor in previous research. Therefore, CAR-T cell technology may be a promising candidate as an immunotherapeutic tool against EOC. However, there are some weaknesses in targeting one antigen from the previous preclinical assay, such as on-target off-tumor cytotoxicity. The dual-target CAR-T cell may be a better choice.Methods: We constructed tandem PD1-antiMUC16 dual-CAR, PD1 single-CAR, and anti-MUC16 single-CAR fragments by PCR and genetic engineering, followed by preparing CAR-T cells via lentiviral infection. The expression of CAR molecules on single and dual CAR-T cells was detected by flow cytometry. The killing capacity and activation of CAR-T cells were measured by cytotoxic assays and cytokines release assays in vitro. The therapeutic capacity of CAR-T cells was assessed by tumor-bearing mice model assay in vivo.Results: We successfully constructed CARs lentiviral expression vectors and obtained single and dual CAR-T cells. CAR-T cells demonstrated robust killing capacity against OVCAR-3 cells in vitro. Meanwhile, CAR-T cells released plenty of cytokines such as interleukin-2(IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α(TNF-α). CAR-T cells showed a therapeutic benefit against OVCAR-3 tumor-bearing mice and significantly prolonged the survival time. Dual CAR-T cells were shown to be two to four times more efficacious than single CAR-T cells in terms of survival time. Conclusion: Although exhibiting a similar ability as single CAR-T cells against OVCAR-3 cells in vitro, dual CAR-T cells demonstrated enhanced killing capacity against OVCAR-3 cells as compared to single CAR-T cells in vivo and significantly prolonged the survival time of tumor-bearing mice. PD1-antiMUC16 CAR-T cells showed more potent antitumor activity than single CAR-T cells in vivo. The present experimental data may support further research work that will have the potential to lead to clinical studies.


Sign in / Sign up

Export Citation Format

Share Document