Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth in Caenorhabditis elegans

2021 ◽  
Vol 8 (1) ◽  
pp. 141-155
Author(s):  
Enrique Ortega ◽  
Francisco J. Ballester ◽  
Alba Hernández-García ◽  
Samanta Hernández-García ◽  
M. Alejandra Guerrero-Rubio ◽  
...  

Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitors in vitro and exert antitumor activity in vivo in C. elegans models.

2013 ◽  
Vol 29 (4) ◽  
pp. 1371-1378 ◽  
Author(s):  
BEI ZHANG ◽  
XUEYA WANG ◽  
FENGFENG CAI ◽  
WEIJIE CHEN ◽  
ULI LOESCH ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Arthur-Quan Tran ◽  
Stephanie A. Sullivan ◽  
Leo Li-Ying Chan ◽  
Yajie Yin ◽  
Wenchuan Sun ◽  
...  

SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.


2016 ◽  
Vol 39 (1) ◽  
pp. 242-252 ◽  
Author(s):  
Chanjuan Li ◽  
Hongjuan Ding ◽  
Jing Tian ◽  
Lili Wu ◽  
Yun Wang ◽  
...  

Background/Aims: FOXC2 has been reported to play a role in tumor progression, but the correlations of FOXC2 with the cisplatin (CDDP) resistance of ovarian cancer cells are still unclear. The purpose of the present study is to investigate the roles of FOXC2 in the CDDP resistance of ovarian cancer cells and its possible mechanisms. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of FOXC2 mRNA in CDDP-resistant or sensitive ovarian cancer tissues and cell lines (SKOV3/CDDP and SKOV3). Gain- and loss-of-function assays were performed to analyze the effects of FOXC2 knockdown or overexpression on the in vitro and in vivo sensitivity of ovarian cancer cells to CDDP and its possible molecular mechanisms. Results: The relative expression level of FOXC2 mRNA in CDDP-resistant ovarian cancer tissues was higher than that in CDDP-sensitive tissues. Also, the expression of FOXC2 mRNA and protein in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP) cell line was higher than that in its parental cell line (SOKV3). Small hairpin RNA (shRNA)-mediated FOXC2 knockdown significantly increased the in vitro and in vive sensitivity of SKOV3/CDDP cells to CDDP by enhancing apoptosis, while upregulation of FOXC2 significantly decreased the in vitro and in vivo sensitivity of SKOV3 cells to CDDP by reducing apoptosis. Furthermore, FOXC2 activates the Akt and MAPK signaling pathways, and then induced the decreased expression of Bcl-2 protein and the increased expression of Bax and cleaved caspase-3 proteins. Conclusions: FOXC2 mediates the CDDP resistance of ovarian cancer cells by activation of the Akt and MAPK signaling pathways, and may be a potential novel therapeutic target for overcoming CDDP resistance in human ovarian cancer.


2001 ◽  
Vol 11 (1) ◽  
pp. 18-23 ◽  
Author(s):  
R.-Y. Zang ◽  
D.-R. Shi ◽  
H.-J. Lu ◽  
S.-M. Cai ◽  
D.-R. Lu ◽  
...  

Author(s):  
Huan Yan ◽  
Hong Li ◽  
Pengyun Li ◽  
Xia Li ◽  
Jianjian Lin ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to be abnormally expressed in human ovarian cancer and associated with the proliferation and metastasis of cancer cells. The objective of this study was to investigate the role and the underlying mechanisms of LncRNA MAP3K20 antisense RNA 1 (MLK7-AS1) in ovarian cancer. Methods The expression level of MLK7-AS1 was investigated in human ovarian cancer tissues and cell lines. The effects of MLK7-AS1 knockdown on ovarian cancer cell proliferation, migration, invasion and apoptosis were evaluated in vitro using MTT, colony formation assays, wound healing assays, transwell assays and flow cytometry. Furthermore, the in vivo effects were determined using the immunodeficient NSG female mice. Luciferase reporter assays were employed to identify interactions among MLK7-AS1 and its target genes. Results In the current study, MLK7-AS1 was specifically upregulated in ovarian cancer tissues and cell lines. Knockdown of MLK7-AS1 inhibited the ability of cell migration, invasion, proliferation, colony formation and wound healing, whereas promoted cell apoptosis in vitro. By using online tools and mechanistic analysis, we demonstrated that MLK7-AS1 could directly bind to miR-375 and downregulate its expression. Besides, MLK7-AS1 reversed the inhibitory effect of miR-375 on the growth of ovarian cancer cells, which might be involved in the upregulation of Yes-associated protein 1 (YAP1) expression. Moreover, knockdown MLK7-AS1 expression inhibited primary tumor growth in ovary and metastatic tumors in multiple peritoneal organs including liver and spleen in vivo, which were partly abolished by miR-375 inhibition. Mechanically, we found that MLK7-AS1 modulated the epithelial-mesenchymal transition (EMT) process by interacting with miR-375/YAP1 both in vivo and vitro, which promoted the expression of Slug. Conclusions Taken together, our study showed for the first time that MLK7-AS1 interacted with miR-375 to promote proliferation, metastasis, and EMT process in ovarian cancer cells through upregulating YAP1.


2019 ◽  
Vol 15 (6) ◽  
pp. 1288
Author(s):  
SalmaAbdi Mahmoud ◽  
MohammedIbrahim Mohammed ◽  
MuhiddinAbdi Mahmoud ◽  
Adam Munkaila ◽  
IddrisuBaba Yabasin

MedComm ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 338-350
Author(s):  
Cuiyu Guo ◽  
E Dong ◽  
Qinhuai Lai ◽  
Shijie Zhou ◽  
Guangbing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document