scholarly journals Downscaling the contribution to uncertainty in climate-change assessments: representative concentration pathway (RCP) scenarios for the South Alborz Range, Iran

2017 ◽  
Vol 25 (3) ◽  
pp. 414-422 ◽  
Author(s):  
M. Mirdashtvan ◽  
A. Najafinejad ◽  
A. Malekian ◽  
A. Sa'doddin

Author(s):  
Jiyun Jung ◽  
Jae Young Lee ◽  
Hyewon Lee ◽  
Ho Kim

As climate change progresses, understanding the impact on human health associated with the temperature and air pollutants has been paramount. However, the predicted effect on temperature associated with particulate matter (PM10) is not well understood due to the difficulty in predicting the local and regional PM10. We compared temperature-attributable mortality for the baseline (2003–2012), 2030s (2026–2035), 2050s (2046–2055), and 2080s (2076–2085) based on a distributed lag non-linear model by simultaneously considering assumed levels of PM10 on historical and projected temperatures under representative concentration pathway (RCP) scenarios. The considered projected PM10 concentrations of 35, 50, 65, 80, and 95 μg/m3 were based on historical concentration quantiles. Our findings confirmed greater temperature-attributable risks at PM10 concentrations above 65 μg/m3 due to the modification effect of the pollutants on temperature. In addition, this association between temperature and PM10 was higher under RCP8.5 than RCP4.5. We also confirmed regional heterogeneity in temperature-attributable deaths by considering PM10 concentrations in South Korea with higher risks in heavily populated areas. These results demonstrated that the modification association of air pollutants on health burdens attributable to increasing temperatures should be considered by researchers and policy makers.



Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.





2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>



2001 ◽  
Vol 1 (2) ◽  
pp. 163
Author(s):  
Leena Srivastava ◽  
Sharmila B. Srikanth
Keyword(s):  


2013 ◽  
Vol 10 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Y. Goddéris ◽  
S. L. Brantley ◽  
L. M. François ◽  
J. Schott ◽  
D. Pollard ◽  
...  

Abstract. Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE), vegetation (CARAIB) and weathering (WITCH), we explore the effect of an increase in CO2 of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the south but decreases strongly in the north. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2 – decreases in both end members (south and north) of the transect due to its retrograde solubility. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the north–south transect show that the dolomite weathering advance rate will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower lysocline expected in the oceans with increasing atmospheric CO2, we predict a deeper lysocline in future soils. Furthermore, in the central Mississippi Valley, soil lysocline deepening accelerates but in the south and north the deepening rate slows. This result illustrates the complex behavior of carbonate weathering facing short term global climate change. Predicting the global response of terrestrial weathering to increased atmospheric CO2 and temperature in the future will mostly depend upon our ability to make precise assessments of which areas of the globe increase or decrease in precipitation and soil drainage.



2018 ◽  
Vol 21 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Habib Zafarullah ◽  
Ahmed Shafiqul Huque

Purpose With climate change and environmental degradation being major issues in the world today, it is imperative for governments within a regional setting to collaborate on initiatives, harmonize their policies and develop strategies to counter threats. In South Asia, several attempts have been made to create a common framework for action in implementing synchronized policies. However, both political and technical deterrents have thwarted moves to accommodate priorities and interests of collaborating states. The purpose of this paper is to assess these issues and existing policies/strategies in selected South Asian countries and evaluate integrated plans of action based on collaborative partnerships. Design/methodology/approach Using a broad exploratory and interpretive approach, this paper evaluates how harmonization of environmental principles and synergies among countries can help reduce the effect of climate change and environmental hazards. Based on a review of ideas and concepts as well as both primary and secondary sources, including official records, legislation, inter-state and regional agreements, evaluation reports, impact studies (social, economic and ecological), and commentaries, it highlights several initiatives and processes geared to creating environmental protection standards and practices for the South Asian region. Findings Climate change has resulted in devastating impacts on people. It contributed to the proliferation of climate refugees and high incidence of poverty in South Asia. The region faces both political and technical obstacles in developing a sustainable approach to combat climate change. This is exacerbated by non-availability of information as well as reluctance to acknowledge the problem by key actors. The best strategy will be to integrate policies and regulations in the various countries of the region to develop strategic plans. The approach of prevention and protection should replace the existing emphasis on relief and rehabilitation. Originality/value The paper provides a critical overview of the climatic and environmental problems encountered in the South Asian region and provides pointers to resolving shared problems through the use of policy instruments for regulating the problems within the gamut of regional environmental governance. It attempts to identify solutions to offset regulatory and institutional barriers in achieving preferred results by emphasizing the need for redesigning regulatory structures and policy approaches for ecological well-being.



2013 ◽  
Vol 91 (4) ◽  
pp. 413-429 ◽  
Author(s):  
Xiaoge XIN ◽  
Li ZHANG ◽  
Jie ZHANG ◽  
Tongwen WU ◽  
Yongjie FANG


Sign in / Sign up

Export Citation Format

Share Document