scholarly journals Geometrical model for calculating the effect of surface morphology on total x‐ray output of medical x‐ray tubes

2020 ◽  
Author(s):  
Maximilian Siller ◽  
Mika Minkkinen ◽  
Pamela Bogust ◽  
Alexander Jelinek ◽  
Jürgen Schatte ◽  
...  
2014 ◽  
Vol 940 ◽  
pp. 41-45
Author(s):  
Xun Hua Yuan ◽  
Chun Yu Qi ◽  
Qi Fu Zhang

The surface morphology and microstructure of galvannealed steel sheet (GA) coatings prepared at different galvannealing parameters were analyzed by X-ray diffraction and SEM, and powdering amount of GA coating was investigated by the double-Olsen powdering tester. The results show that when the Al contents below 0.16 wt%, the Ra of GA coating surface was measured namely below 1.0 μm, and powdering amount of GA coating was below 30 mg/m2, it is within a reasonable value required by automotive makers. After that with the Al contents increased in zinc liquid the amount of powdering increased, this means that the powdering resistance performance of GA coating not only depended on the iron content in the coating, but depended on the roughness profiles of the surface coating. When the galvanizing coating with 0.22 wt% Al content and galvannealing at 500 °C, with the inhibition effect of Fe2Al5Znxinhibit layer, the thickness of δ1k-phase was different in the GA coating, which deteriorated the powdering resistance performance of GA coating.


2012 ◽  
Vol 21 (9) ◽  
pp. 097304 ◽  
Author(s):  
Jia Li ◽  
Li Wang ◽  
Zhi-Hong Feng ◽  
Cui Yu ◽  
Qing-Bin Liu ◽  
...  

1998 ◽  
Vol 80 (21) ◽  
pp. 4713-4716 ◽  
Author(s):  
M. V. Ramana Murty ◽  
T. Curcic ◽  
A. Judy ◽  
B. H. Cooper ◽  
A. R. Woll ◽  
...  

2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


2013 ◽  
Author(s):  
Lu Huang ◽  
Jing Jin ◽  
Guohua Wang ◽  
Weimin Shi ◽  
Weiguang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document