Effect of Surface Morphology and Microstructure on Powdering Resistance Performance of GA Coatings with Different Aluminum Contents

2014 ◽  
Vol 940 ◽  
pp. 41-45
Author(s):  
Xun Hua Yuan ◽  
Chun Yu Qi ◽  
Qi Fu Zhang

The surface morphology and microstructure of galvannealed steel sheet (GA) coatings prepared at different galvannealing parameters were analyzed by X-ray diffraction and SEM, and powdering amount of GA coating was investigated by the double-Olsen powdering tester. The results show that when the Al contents below 0.16 wt%, the Ra of GA coating surface was measured namely below 1.0 μm, and powdering amount of GA coating was below 30 mg/m2, it is within a reasonable value required by automotive makers. After that with the Al contents increased in zinc liquid the amount of powdering increased, this means that the powdering resistance performance of GA coating not only depended on the iron content in the coating, but depended on the roughness profiles of the surface coating. When the galvanizing coating with 0.22 wt% Al content and galvannealing at 500 °C, with the inhibition effect of Fe2Al5Znxinhibit layer, the thickness of δ1k-phase was different in the GA coating, which deteriorated the powdering resistance performance of GA coating.

Author(s):  
Mariola Kądziołka-Gaweł ◽  
Maria Czaja ◽  
Mateusz Dulski ◽  
Tomasz Krzykawski ◽  
Magdalena Szubka

AbstractMössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis-octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. This temperature can be treated as the second stage of dehydroxylation. The temperature dependence on the integral intensity ratio between bands centered at ~590 and 705 cm−1 (I590/I705) clearly reflects the temperature at which six-coordinated polyhedra are transformed into five-coordinated polyhedra. X-ray photoelectron spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p and O1s core levels, highlighted a route to identify the position of Si, Al, K and Fe cations in a structure of layered silicates with temperature. All the measurements show that the sample with a higher aluminum content and a lower iron content in octahedral sites starts to undergo a structural reorganization at a relatively higher temperature than the less aluminum-rich sample does. This suggests that iron may perform an important role in the initiation of the dehydroxylation of aluminoceladonites.


2020 ◽  
Author(s):  
Maximilian Siller ◽  
Mika Minkkinen ◽  
Pamela Bogust ◽  
Alexander Jelinek ◽  
Jürgen Schatte ◽  
...  

2011 ◽  
Vol 189-193 ◽  
pp. 743-746
Author(s):  
Jian Feng Li ◽  
Li Zhi Guo ◽  
Guo Qing Li

This article summarized depositing craft of the superficial coatings (Ni-Co-Cr-Al-Y-Si) on the Ti60 alloy (Ti-6.5Al-4.2Sn-4Zr-0.6Si) with arc ion plating technology and the oxidation behavior under 600~750 . The X-ray diffraction (XRD) and the scanning electronic microscope (SEM) were used to analyze the surface appearance, the structure and the ingredient conducts of non-coating Ti60 alloy. The contrast shows that the coatings have good protection to Ti60 alloy. The result indicated that the coating has the good oxidation resistance performance under 600°C , 650°C and 750°C . Coated Ti60 alloy oxidation resistance is markly improved. The circulation oxidation dynamics curve basically conforms to the parabola rule.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mengna Yang ◽  
Junzhe Liu ◽  
Hui Wang ◽  
Yushun Li ◽  
Yanhua Dai ◽  
...  

Chemical quantitative analysis of effective anticorrosion component and micro-analysis of hydration products of fly ash and slag on the influence of the nitrites corrosion inhibition was studied by the free nitrite ion concentration and X-ray diffraction pattern. The free nitrite ion concentration was used to describe the corrosion inhibition effect of nitrites. And the X-ray diffraction patterns were used to analyze the adsorption properties. The research results show that fly ash and slag were beneficial for improving the corrosion inhibition effect of nitrites. Cement-based materials with slag at low content presented high free nitrite ion concentration, but the addition of low content of fly ash harmed the corrosion inhibition effect of nitrites. The specimens incorporated with both fly ash and slag can reach the highest free nitrite ion concentration when the compounding proportion was 1:1. It was concluded that the extent of mineral admixtures of the corrosion inhibition effect of nitrites was affected by its type and content.


2011 ◽  
Vol 399-401 ◽  
pp. 855-859
Author(s):  
Ting Ting Wu ◽  
Bo Lin Wu

In order to improve the acid resistance and reduce the apparent density of fracturing proppants, TiO2 powder added in the system of BaO-MgO-Al2O3 fracturing proppants were prepared by the technique of pressureless sintering. The properties of the samples were investigated by the measurements of acid solubility, X-ray diffraction and scanning electron microscopy. The results show that the acid solubility of alumina matrix fracturing proppants contenting TiO2 of the 4wt% and BaO/MgO with the ratio of 3:7 is 0.15%. It is an important development in acid resistance performance of fracturing proppants research on laboratory. TiO2 is added to the raw materials and then calcine them to ceramics, which can reduces the sintering temperature, promote the densification and improve acid-resistant property of fracturing proppants.


2012 ◽  
Vol 488-489 ◽  
pp. 76-81 ◽  
Author(s):  
Subramani Shanmugan ◽  
Mutharasu Devarajan ◽  
Kamarulazizi Ibrahim

Sb layered Te/Cd thin films have been prepared by using Stacked Elemental Layer (SEL) method. The presence of mixed phases (CdTe and Sb2Te3) in the films was confirmed by the x-ray diffraction technique. The calculated structural parameters demonstrated the feasibility of Sb doping via SEL method. The topographical and electrical studies of the synthesized thin films depicted the influence of Sb on both surface morphology and conductivity. The values of conductivity of the annealed films were in between 2 x 10-3 and 175 x 10-2 Scm-2. A desired chemical composition of films was confirmed from spectrum shape analysis using energy dispersive x-ray.


Author(s):  
Marc Seefeldt ◽  
Artur Walentek ◽  
Paul Van Houtte ◽  
Miroslav Vrána ◽  
Petr Lukáš

Sign in / Sign up

Export Citation Format

Share Document