Expression and function of interleukin‐1β is required for hamster blastocyst hatching: Involvement of hatching‐associated cathepsin proteases

2021 ◽  
Vol 88 (4) ◽  
pp. 274-286
Author(s):  
Madhulika Pathak ◽  
Venkatappa Vani ◽  
Polani B. Seshagiri
PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0166707 ◽  
Author(s):  
Tadayoshi Konno ◽  
Rei Nakano ◽  
Ryo Mamiya ◽  
Hisashi Tsuchiya ◽  
Taku Kitanaka ◽  
...  

2019 ◽  
Author(s):  
Balajikarthick Subramanian ◽  
Justin Chun ◽  
Chandra Perez ◽  
Paul Yan ◽  
Isaac Stillman ◽  
...  

AbstractRegulation of the actin cytoskeleton is critical for normal glomerular podocyte structure and function. Altered regulation of the podocyte cytoskeleton can lead to proteinuria, reduced kidney filtration function and focal segmental glomerulosclerosis (FSGS). Mutations in inverted formin 2 (INF2), a member of the formin family of actin regulatory proteins, are the most common cause of autosomal dominant FSGS. INF2 is a multi-domain protein regulated by interaction between its N-terminal Diaphanous Inhibitory Domain (DID) and its C-terminal Diaphanous Auto-regulatory Domain (DAD). Although many aspects of the INF2 DID-DAD interaction are understood, it remains unclear why disease-causing mutations are restricted to the DID and how these mutations cause human disease. Here we report a proteolytic cleavage in INF2 that liberates the INF2 N-terminal DID to function independently of the INF2 C-terminal fragment containing the DAD domain. N-terminal DID region epitopes are differentially localized to podocyte foot process structures in normal glomeruli. This N-terminal fragment localization is lost in INF2-mediated FSGS, whereas INF2 C-terminal fragment epitopes localize to the podocyte cell body in both normal and disease conditions. INF2 cleavage is mediated by cathepsin proteases. In cultured podocytes, the wild-type INF2 N-terminal fragment localizes to membrane regions and promotes cell spreading, while these functions are impaired in a disease-associated INF2 mutant R218Q in the DID. These features are dependent on INF2-cleavage, with accompanying interaction of INF2 N-fragment with mDIA1. Our data suggest a unique cellular function of the DID dependent on INF2 cleavage and help explain the altered localization of FSGS-associated INF2 mutant polypeptides.


Reproduction ◽  
2020 ◽  
Author(s):  
Madhulika Pathak ◽  
Vani Venkatappa ◽  
Surendra Sharma ◽  
Polani B. Seshagiri

Mammalian blastocyst hatching is critically an indispensable process for successful implantation. One of the major challenges in IVF clinics is to achieve superior embryonic development with intrinsically potent hatching-competent blastocyst. However, the molecular regulation of hatching phenomenon is poorly understood. In this study, we examined the expression and function of one of the cytokines, IL-1β during blastocyst hatching in the mouse. In particular, the expression of IL-1β (Interleukin-1β), IL-1ra (Interleukin-1 receptor antagonist) and their functional receptor IL-1rt1 (Interleukin 1 receptor type-1) in morulae, zona intact- and hatched- blastocysts was studied. Supplementation of IL-1β to cultured embryos accelerated blastocyst development with improved hatching (treated: 89.6 ± 3.6% vs untreated: 65.4 ± 4.1%). When embryos were treated with IL-1ra, blastocyst hatching was decreased (treated: 28.8 ± 3.1% vs untreated: 67.5 ± 3.8%). Moreover, IL-1β and IL-1ra influenced the expression of hatching enzymes viz., implantation serine proteases (ISP 1 and ISP 2). While IL-1β increased the embryonic mRNA expression of ISPs (ISP1: 2-4; ISP2: 9-11 fold), IL-1ra decreased expression. The protein localization studies revealed increased nuclear presence predominantly of ISP 2 in IL-1β treated blastocysts. This is the first report to show the functional significance of embryonic IL-1β in regulating hatching-associated proteases, particularly ISP2. These findings have implications in our understanding of molecular regulation of blastocyst hatching and implantation failure in other species including humans.


1990 ◽  
Vol 371 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Kim R. HEJNAES ◽  
Birgit SEHESTED ◽  
Helle WORSAAE ◽  
Jens MØLVIG ◽  
Axel WOLLMER

1997 ◽  
Vol 185 (7) ◽  
pp. 1287-1294 ◽  
Author(s):  
Uwe Schönbeck ◽  
Mona Herzberg ◽  
Arnd Petersen ◽  
Claudia Wohlenberg ◽  
Johannes Gerdes ◽  
...  

Local immunoregulatory processes during normal vascular biology or pathogenesis are mediated in part by the production of and response to cytokines by vessel wall cells. Among these cytokines interleukin (IL)-1 is considered to be of major importance. Although vascular smooth muscle (SMC) and endothelial cells (EC) expressed both IL-1α and IL-1β as cell-associated, 33-kilodalton (kD) precursors, SMC neither contained detectable mature IL-1β, nor processed recombinant IL-1β precursor into its mature 17-kD form. Thus, we investigated the expression and function of IL-1β–converting enzyme (ICE) in vascular cells. We demonstrate in processing experiments with recombinant IL-1 precursor molecules that EC processed IL-1β, in contrast to SMC. Despite the failure of SMC to process IL-1β, these cells expressed ICE mRNA, immunoreactive ICE protein, and the expected IL-1β nucleotide sequence. The lack of processing was explained by our finding that extracts of SMC specifically and concentration dependently blocked processing of IL-1β precursor by recombinant or native ICE. The initial biochemical characterization of the inhibitory activity showed that it is heat-labile, has a molecular size of 50–100 kD, and is associated to the cell membrane compartment. Inhibition of processing, i.e., activation of IL-1β precursor by SMC may constitute a novel regulatory mechanism during normal vascular biology or pathogenesis of vascular diseases.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Sign in / Sign up

Export Citation Format

Share Document