Enhancing mechanical properties of high‐density polyethylene/polydopamine‐modified basalt fiber composites via synergistic compatibilizers

2021 ◽  
Author(s):  
Wenjing Song ◽  
Ke Guo ◽  
Zongze Li ◽  
Yunhui Zhao ◽  
Kongying Zhu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Min Yu ◽  
Haiyan Mao ◽  
Runzhou Huang ◽  
Zhenghao Ge ◽  
Pujian Tian ◽  
...  

The effect of individual and combined particleboard dust (PB dust) and basalt fibers (BFs) on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE) composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE) values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.


Author(s):  
Carlos Angulo ◽  
Siddhartha Brahma ◽  
Alejandra Espinosa‐Dzib ◽  
Robert Peters ◽  
Katherine M. E. Stewart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document